Age | Commit message (Collapse) | Author | Files | Lines |
|
Preparation for 4.19 merge material.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
A commit 28b208f600a3 ('ALSA: dice: add parameters of stream formats for
models produced by Alesis') adds wrong copy to rx parameters instead of
tx parameters for Alesis iO26.
This commit fixes the bug for v4.18-rc8.
Fixes: 28b208f600a3 ('ALSA: dice: add parameters of stream formats for models produced by Alesis')
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Cc: <stable@vger.kernel.org> # v4.18
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
snd_pcm_lib_mmap_vmalloc() was supposed to be implemented with
somewhat special for vmalloc handling, but in the end, this turned to
just the default handler, i.e. NULL. As the situation has never
changed over decades, let's rip it off.
Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
This commit adds support for MOTU Traveler, launched in 2005, discontinued
quite before. As a result, transmission of PCM frame and MIDI messages is
available via ALSA PCM and RawMIDI/Sequencer interfaces.
This model supports sampling transmission frequency up to 192.0 kHz, and
AES/EBU on XLR interface and ADAT on optical interface. Unlike
Motu 828MkII, Windows driver can switch fetching mode for DSP, like
mute/unmute feature.
Although this commit enables high sampling transmission frequency, actual
sound from this model is not good. As long as I tested, it's silence at
176.4 kHz, and it includes hissing noise at 192.0 kHz. In my opinion, as I
reported at 3526ce7f9ba7 ('ALSA: firewire-motu: add MOTU specific protocol
layer'), timestamping on source packet header (SPH) may not still be good
for this model as well.
$ python2 crpp < /sys/bus/firewire/devices/fw1/config_rom
ROM header and bus information block
-----------------------------------------------------------------
400 04106505 bus_info_length 4, crc_length 16, crc 25861
404 31333934 bus_name "1394"
408 20001000 irmc 0, cmc 0, isc 1, bmc 0, cyc_clk_acc 0, max_rec 1 (4)
40c 0001f200 company_id 0001f2 |
410 0001f32f device_id 000001f32f | EUI-64 0001f2000001f32f
root directory
-----------------------------------------------------------------
414 0004c65c directory_length 4, crc 50780
418 030001f2 vendor
41c 0c0083c0 node capabilities per IEEE 1394
420 8d000006 --> eui-64 leaf at 438
424 d1000001 --> unit directory at 428
unit directory at 428
-----------------------------------------------------------------
428 00035955 directory_length 3, crc 22869
42c 120001f2 specifier id
430 13000009 version
434 17107800 model
eui-64 leaf at 438
-----------------------------------------------------------------
438 000206b2 leaf_length 2, crc 1714
43c 0001f200 company_id 0001f2 |
440 0001f32f device_id 000001f32f | EUI-64 0001f2000001f32f
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
For MOTU protocol version 2, this driver arranges the number of data
chunks to align chunks to quadlet data channel. However, MOTU Traveler
has padding bytes in the end of data block at high clock mode.
This commit removes the arrangement. Fortunately, at low and middle clock
mode, supported model for v2 protocol (828mkII) gets no influence from this
change because all of combination for data chunks are just aligned to
quadlet data channel.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
MOTU Traveler supports AES/EBU on XLR interface and data block of rx/tx
packet includes two chunk for the interface. This commit adds a flag
for this purpose.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
This driver explicitly assumes that all of supported models have main data
chunk separated from chunk for analog ports. However, MOTU Traveler doesn't
support the separated main data chunk.
This commit adds a flag for the separated main data chunk.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
In MOTU firewire protocol, data block consists of 24 bit data chunks except
for one quadlet for source packet header (SPH). The number of data chunk in
a data block is different between three clock modes; low, middle and high.
When unit supports ADAT on optical interface, the data block includes some
chunks for ADAT channels. These ADAT chunks are unavailable at high mode.
This driver has local functions to calculate the number of ADAT chunks. But
They uses stack for three clock modes. This is useless for higher mode.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:
kzalloc(a * b, gfp)
with:
kcalloc(a * b, gfp)
as well as handling cases of:
kzalloc(a * b * c, gfp)
with:
kzalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kzalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kzalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kzalloc
+ kcalloc
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kzalloc(sizeof(THING) * C2, ...)
|
kzalloc(sizeof(TYPE) * C2, ...)
|
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
kmalloc(a * b, gfp)
with:
kmalloc_array(a * b, gfp)
as well as handling cases of:
kmalloc(a * b * c, gfp)
with:
kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Convert the S_<FOO> symbolic permissions to their octal equivalents as
using octal and not symbolic permissions is preferred by many as more
readable.
see: https://lkml.org/lkml/2016/8/2/1945
Done with automated conversion via:
$ ./scripts/checkpatch.pl -f --types=SYMBOLIC_PERMS --fix-inplace <files...>
Miscellanea:
o Wrapped one multi-line call to a single line
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Vinod Koul <vkoul@kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Electronic models
At present, all of models produced by TC Electronic except for Konnekt Live
are supported with hard-coded their stream formats. Studio Konnekt 48 is
sore model to support dual streams for both directions. The second stream
has no MIDI conformant data channel in its data block. But current
implementation transfers the second stream with MIDI conformant data
channel.
This commit fixes this issue.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
TC Electronic Studio Konnekt 48 is an application of combination of
WaveFront Dice II STD and TC Applied Technologies (TCAT) TCD2210 (Dice
Mini). The latter is on a board with BNC and optical interfaces, thus
used for signal processing for word clock, S/PDIF and ADAT. This model
doesn't support TCAT extended application protocol. For such devices,
ALSA dice driver needs to have hard-coded parameters for stream formats.
This commit fixes stream format parameters for this model. Unfortunately, at
sampling transmission frequencies over 48.0kHz, I confirmed that current
ALSA dice driver doesn't drive the device appropriately to generate sounds
(silence). I guess that this comes from timestamping quirk of Dice-based
devices, which I reported.
[alsa-devel] Dice packet sequence quirk and ALSA firewire stack in Linux 4.6
http://mailman.alsa-project.org/pipermail/alsa-devel/2016-May/107715.html
$ cd linux-firewire-utils/src
$ python2 crpp < /sys/bus/firewire/devices/fw1/config_rom
ROM header and bus information block
-----------------------------------------------------------------
400 04044a26 bus_info_length 4, crc_length 4, crc 18982
404 31333934 bus_name "1394"
408 e0ff8112 irmc 1, cmc 1, isc 1, bmc 0, pmc 0, cyc_clk_acc 255,
max_rec 8 (512), max_rom 1, gen 1, spd 2 (S400)
40c 00016604 company_id 000166 |
410 08a65810 device_id 0408a65810 | EUI-64 0001660408a65810
root directory
-----------------------------------------------------------------
414 00062ab9 directory_length 6, crc 10937
418 03000166 vendor
41c 8100000a --> descriptor leaf at 444
420 17000022 model
424 8100000f --> descriptor leaf at 460
428 0c0087c0 node capabilities per IEEE 1394
42c d1000001 --> unit directory at 430
unit directory at 430
-----------------------------------------------------------------
430 0004d5c5 directory_length 4, crc 54725
434 12000166 specifier id
438 13000001 version
43c 17000022 model
440 8100000f --> descriptor leaf at 47c
descriptor leaf at 444
-----------------------------------------------------------------
444 0006c490 leaf_length 6, crc 50320
448 00000000 textual descriptor
44c 00000000 minimal ASCII
450 54432045 "TC E"
454 6c656374 "lect"
458 726f6e69 "roni"
45c 63000000 "c"
descriptor leaf at 460
-----------------------------------------------------------------
460 0006e08e leaf_length 6, crc 57486
464 00000000 textual descriptor
468 00000000 minimal ASCII
46c 53747564 "Stud"
470 696f4b6f "ioKo"
474 6e6e656b "nnek"
478 74343800 "t48"
descriptor leaf at 47c
-----------------------------------------------------------------
47c 0006e08e leaf_length 6, crc 57486
480 00000000 textual descriptor
484 00000000 minimal ASCII
488 53747564 "Stud"
48c 696f4b6f "ioKo"
490 6e6e656b "nnek"
494 74343800 "t48"
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
match_string() returns the index of an array for a matching string,
which can be used intead of open coded variant.
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
TC Electronic Digital Konnekt x32 is an application of WaveFront DiceII STD
and doesn't support TCAT extended application protocol. For such devices,
ALSA dice driver needs to have hard-coded parameters for stream formats.
This commit adds stream format parameters for this model. Unfortunately, at
sampling transmission frequencies of 88.2/96.0kHz, I confirmed that current
ALSA dice driver doesn't drive the device appropriately due to detecting
packet discontinuities.
$ journalctl
kernel: snd_dice fw1.0: Detect discontinuity of CIP: 90 80
At the frequencies, the device transfers 16 data blocks per packet and 16
data channels per data block, as a result one packet includes 1032 bytes
if it's not NODATA. However, as long as I checked, the device often
postpone packet transmission and continue with truncated payload than
metadata in isochronous packet header. Below is a sample of sequence I got.
sec cycle bytes CIP1 CIP2
37 3314 1032 0x01100090 0x900449E2
37 3315 8 0x011000A0 0x9004FFFF
37 3316 1032 0x011000A0 0x900461E2
37 3317 1032 0x011000B0 0x900475E2
37 3318 1032 0x011000C0 0x900489E2
37 3319 8 0x011000D0 0x9004FFFF
37 3320 1032 0x011000D0 0x9004A1E2
37 3321 1032 0x011000E0 0x9004B5E2
37 3322 1032 0x011000F0 0x9004C9E2
37 3323 8 0x01100000 0x9004FFFF
37 3324 1032 0x01100000 0x9004E1E2
37 3325 1032 0x01100010 0x9004F5E2
37 3326 1032 0x01100020 0x900409E2
37 3327 8 0x01100030 0x9004FFFF
37 3328 1032 0x01100030 0x900421E2
37 3329 1032 0x01100040 0x900435E2
37 3330 (skip)
37 3331 (skip)
37 3332 (skip)
37 3333 (skip)
37 3334 (skip)
37 3335 (skip)
37 3336 (skip)
37 3337 (skip)
37 3338 (skip)
37 3339 (skip)
37 3340 (skip)
37 3341 (skip)
37 3342 (skip)
37 3343 (skip)
37 3344 (skip)
37 3345 (skip)
37 3346 (skip)
37 3347 (skip)
37 3348 (skip)
37 3349 (skip)
37 3350 (skip)
37 3351 (skip)
37 3352 (skip)
37 3353 (skip)
37 3354 (skip)
37 3355 (skip)
37 3356 (skip)
37 3357 (skip)
37 3358 (skip)
37 3359 (skip)
37 3360 (skip)
37 3361 (skip)
37 3362 (skip)
37 3363 (skip)
37 3364 (skip)
37 3365 (skip)
37 3366 (skip)
37 3367 1032 0x01100050 0x900461E1
37 3368 1032 0x01100060 0x900475E1
37 3369 1032 0x01100070 0x9004A1E1
37 3370 1032 0x01100080 0x9004A1E1 but content of payload is truncated.
37 3371 (skip)
37 3371 1032 0x01100080 0x9004B5E0 detect discontinuity
37 3372 1032 0x01100090 0x9004C9E0
37 3373 1032 0x011000A0 0x9004E1E0
37 3374 1032 0x011000B0 0x9004F5E0
37 3375 1032 0x011000C0 0x900409E0
37 3376 1032 0x011000D0 0x900421E0
37 3377 1032 0x011000E0 0x900435E0
37 3378 1032 0x011000F0 0x900449DF
37 3379 8 0x01100000 0x9004FFFF
37 3380 1032 0x01100000 0x900461DF
37 3381 1032 0x01100010 0x900475DF
37 3382 1032 0x01100020 0x900489DF
37 3383 8 0x01100030 0x9004FFFF
37 3384 1032 0x01100030 0x9004A1DF
37 3385 1032 0x01100040 0x9004B5DF
37 3386 1032 0x01100050 0x9004C9DF
37 3387 8 0x01100060 0x9004FFFF
I cannot confirm this quirks with Windows driver. ALSA dice driver has a
cause if assumed differences between these two drivers are ways of
timestampling to RX packets from the drivers to the device. I've already
reported timestamping quirk of Dice-based devices and this might bring
this issue.
[alsa-devel] Dice packet sequence quirk and ALSA firewire stack in Linux 4.6
http://mailman.alsa-project.org/pipermail/alsa-devel/2016-May/107715.html
Well, nevertheless, I enable ALSA dice driver to work at the frequencies.
This may brings inconvenience to users but I expect developers and users
to fix it.
$ cd linux-firewire-utils/src
$ python2 crpp < /sys/bus/firewire/devices/fw1/config_rom
ROM header and bus information block
-----------------------------------------------------------------
400 040423bb bus_info_length 4, crc_length 4, crc 9147
404 31333934 bus_name "1394"
408 e0ff8112 irmc 1, cmc 1, isc 1, bmc 0, pmc 0, cyc_clk_acc 255,
max_rec 8 (512), max_rom 1, gen 1, spd 2 (S400)
40c 00016604 company_id 000166 |
410 0c232c28 device_id 040c232c28 | EUI-64 000166040c232c28
root directory
-----------------------------------------------------------------
414 0006b6cb directory_length 6, crc 46795
418 03000166 vendor
41c 8100000a --> descriptor leaf at 444
420 17000030 model
424 8100000f --> descriptor leaf at 460
428 0c0087c0 node capabilities per IEEE 1394
42c d1000001 --> unit directory at 430
unit directory at 430
-----------------------------------------------------------------
430 000476c2 directory_length 4, crc 30402
434 12000166 specifier id
438 13000001 version
43c 17000030 model
440 81000010 --> descriptor leaf at 480
descriptor leaf at 444
-----------------------------------------------------------------
444 0006c490 leaf_length 6, crc 50320
448 00000000 textual descriptor
44c 00000000 minimal ASCII
450 54432045 "TC E"
454 6c656374 "lect"
458 726f6e69 "roni"
45c 63000000 "c"
descriptor leaf at 460
-----------------------------------------------------------------
460 000772b4 leaf_length 7, crc 29364
464 00000000 textual descriptor
468 00000000 minimal ASCII
46c 44696769 "Digi"
470 74616c4b "talK"
474 6f6e6e65 "onne"
478 6b747833 "ktx3"
47c 32000000 "2"
descriptor leaf at 480
-----------------------------------------------------------------
480 000772b4 leaf_length 7, crc 29364
484 00000000 textual descriptor
488 00000000 minimal ASCII
48c 44696769 "Digi"
490 74616c4b "talK"
494 6f6e6e65 "onne"
498 6b747833 "ktx3"
49c 32000000 "2"
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
The "entry" pointer is always non-NULL so this test for out of bounds
won't work.
Fixes: f1f0f330b1d0 ("ALSA: dice: add parameters of stream formats for models produced by TC Electronic")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
--nextPart3916812.EicPReet6m
Content-Transfer-Encoding: 7Bit
Content-Type: text/plain; charset="us-ascii"
Mytek manufactures some equipment with DICE-based firewire ports. These
devices contain old versions of DICE firmware which lacks detailed
stream format reporting for all sampling clock modes.
Building upon the recent work by Takashi Sakamoto, hard-coded parameters
are added for the Stereo 192 DSD-DAC. When the device vendor and model
match the coded parameters are copied into the stream format cache.
Signed-off-by: Melvin Vermeeren <mail@mel.vin>
Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Back-merge of UAC3 fixes for applying further enhancements.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
A series of SNDRV_CTL_TLVO_XXX macro was introduced for position offset
of TLV data. This commit applies a code optimization.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Acked-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
At present, to add PCM substreams for each of available tx/rx streams,
this driver uses a condition based on model-name. This is not enough
to support unknown models.
In former commits, this driver gains cache of stream formats. For models
which support protocol extension, all of available steam formats are
cached. For known models, hard-coded stream formats are used to generate
the cache. For unknown models, stream formats at current mode of sampling
transmission frequency is cached.
Anyway, at least, the cached formats are used to expose constrains of PCM
substreams for userspace applications. Thus, The cached data can be also
used to add PCM substreams themselves, instead of the name-based
conditions.
This commit obsoletes local frag of force_two_pcms.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
In former commits, proxy structure gets members for cache of stream
formats. The cache allows to apply correct constraints and rules to
runtime of PCM substream. They allows userspace applications to change
current sampling transmission frequency.
This commit uses the cacher for the PCM constraints and rules.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
In former commits, proxy structure gets members for cache of stream
formats. The cache can be used to count the number of MIDI substreams
to add.
This commit uses the cache for this purpose.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
This is a preparation for userspace applications to change current sampling
transmission frequency via ALSA PCM interface.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
This commit is a small refactoring for better readability.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
At present, to check running stream, available stream formats are used
at current sampling transmission frequency (stf). But when changing stf,
it's convenient to use cache of stream formats.
This commit applies this idea.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
TC Applied Technologies (TCAT) have added extension to DICE protocol. This
protocol extension is called as Extended Application Protocol, a.k.a. EAP.
In this protocol extension, units get additional 9 address spaces. One of
it is for current configuration. In this address space, a pair of router
and stream formats are exposed per mode of three sampling transmission
frequencies.
This commit adds support the protocol extension for address space of the
current configuration to generate cache of stream formats.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Alesis shipped some models with DICE ASICs. All of them just support
DICE original protocol and drivers can't retrieve all of available stream
formats without changing status of sampling transmission frequency
actually.
This commit puts some hard-coded parameters for the models. When detecting
the models, the corresponding parameters are copied as cache of stream
formats.
I note that each of pair of iO14/iO26 and MultiMix 8/12/16 has the same
model ID on their configuration ROM. The MultiMix 8/12/16 just support
one mode for sampling transmission frequency and ALSA dice driver already
handles them correctly. The iO14/iO26 support three modes and need
hard-coded parameters. To distinguish these two models, this commit let
the driver to retrieve current stream formats and compare it to known
parameters, then decide it.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Electronic
TC Electronic shipped some models with DICE ASICs. All of them just support
DICE original protocol and drivers can't retrieve all of available stream
formats without changing status of sampling transmission frequency
actually.
This commit puts some hard-coded parameters for the models. When detecting
the models, the corresponding parameters are copied as cache of stream
formats.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
frequency
In former commits, proxy structure get members for cache of stream
formats. This commit fills the cache with stream formats at current mode
of sampling transmission frequency.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Products with DICE interface in market can support variable stream
formats for three levels of sampling transmission frequencies. To
record these formats, a proxy structure got several fields in former
commit.
This commit adds a proc node to output the stream formats for debugging
purpose.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Unlike the other drivers in ALSA firewire stack, ALSA dice driver does't
create 'firewire' directory for proc nodes because it has 'dice' node
only. But this is inconvenient because I have a plan to add another proc
node to output available stream formats from cache.
This commit let the driver to create the directory and put 'dice' node
into it.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
A previous commit 6f688268b3f4 ('ALSA: dice: purge generating channel
cache') purged cache of stream formats. DICE interface originally has
no feature to assist drivers to retrieve available formats for all of
supported sampling transmission frequencies, without changing the
frequency actually.
For later release of Dice ASICs such as TCD2210, Dice interface has
extended protocol and can support the feature. This assists drivers
to retrieve available stream formats.
This commit is a first step to regain the cache to generate PCM rules
for all of supported sampling transmission frequencies.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
for array index
At a commit f91c9d7610a ('ALSA: firewire-lib: cache maximum length of
payload to reduce function calls'), maximum size of payload for tx
isochronous packet is cached to reduce the number of function calls.
This cache was programmed to updated at a first callback of ohci1394 IR
context. However, the maximum size is required to queueing packets before
starting the isochronous context.
As a result, the cached value is reused to queue packets in next time to
starting the isochronous context. Then the cache is updated in a first
callback of the isochronous context. This can cause kernel NULL pointer
dereference in a below call graph:
(sound/firewire/amdtp-stream.c)
amdtp_stream_start()
->queue_in_packet()
->queue_packet()
(drivers/firewire/core-iso.c)
->fw_iso_context_queue()
->struct fw_card_driver.queue_iso()
(drivers/firewire/ohci.c)
= ohci_queue_iso()
->queue_iso_packet_per_buffer()
buffer->pages[page]
The issued dereference occurs in a case that:
- target unit supports different stream formats for sampling transmission
frequency.
- maximum length of payload for tx stream in a first trial is bigger
than the length in a second trial.
In this case, correct number of pages are allocated for DMA and the 'pages'
array has enough elements, while index of the element is wrongly calculated
according to the old value of length of payload in a call of
'queue_in_packet()'. Then it causes the issue.
This commit fixes the critical bug. This affects all of drivers in ALSA
firewire stack in Linux kernel v4.12 or later.
[12665.302360] BUG: unable to handle kernel NULL pointer dereference at 0000000000000030
[12665.302415] IP: ohci_queue_iso+0x47c/0x800 [firewire_ohci]
[12665.302439] PGD 0
[12665.302440] P4D 0
[12665.302450]
[12665.302470] Oops: 0000 [#1] SMP PTI
[12665.302487] Modules linked in: ...
[12665.303096] CPU: 1 PID: 12760 Comm: jackd Tainted: P OE 4.13.0-38-generic #43-Ubuntu
[12665.303154] Hardware name: /DH77DF, BIOS KCH7710H.86A.0069.2012.0224.1825 02/24/2012
[12665.303215] task: ffff9ce87da2ae80 task.stack: ffffb5b8823d0000
[12665.303258] RIP: 0010:ohci_queue_iso+0x47c/0x800 [firewire_ohci]
[12665.303301] RSP: 0018:ffffb5b8823d3ab8 EFLAGS: 00010086
[12665.303337] RAX: ffff9ce4f4876930 RBX: 0000000000000008 RCX: ffff9ce88a3955e0
[12665.303384] RDX: 0000000000000000 RSI: 0000000034877f00 RDI: 0000000000000000
[12665.303427] RBP: ffffb5b8823d3b68 R08: ffff9ce8ccb390a0 R09: ffff9ce877639ab0
[12665.303475] R10: 0000000000000108 R11: 0000000000000000 R12: 0000000000000003
[12665.303513] R13: 0000000000000000 R14: ffff9ce4f4876950 R15: 0000000000000000
[12665.303554] FS: 00007f2ec467f8c0(0000) GS:ffff9ce8df280000(0000) knlGS:0000000000000000
[12665.303600] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[12665.303633] CR2: 0000000000000030 CR3: 00000002dcf90004 CR4: 00000000000606e0
[12665.303674] Call Trace:
[12665.303698] fw_iso_context_queue+0x18/0x20 [firewire_core]
[12665.303735] queue_packet+0x88/0xe0 [snd_firewire_lib]
[12665.303770] amdtp_stream_start+0x19b/0x270 [snd_firewire_lib]
[12665.303811] start_streams+0x276/0x3c0 [snd_dice]
[12665.303840] snd_dice_stream_start_duplex+0x1bf/0x480 [snd_dice]
[12665.303882] ? vma_gap_callbacks_rotate+0x1e/0x30
[12665.303914] ? __rb_insert_augmented+0xab/0x240
[12665.303936] capture_prepare+0x3c/0x70 [snd_dice]
[12665.303961] snd_pcm_do_prepare+0x1d/0x30 [snd_pcm]
[12665.303985] snd_pcm_action_single+0x3b/0x90 [snd_pcm]
[12665.304009] snd_pcm_action_nonatomic+0x68/0x70 [snd_pcm]
[12665.304035] snd_pcm_prepare+0x68/0x90 [snd_pcm]
[12665.304058] snd_pcm_common_ioctl1+0x4c0/0x940 [snd_pcm]
[12665.304083] snd_pcm_capture_ioctl1+0x19b/0x250 [snd_pcm]
[12665.304108] snd_pcm_capture_ioctl+0x27/0x40 [snd_pcm]
[12665.304131] do_vfs_ioctl+0xa8/0x630
[12665.304148] ? entry_SYSCALL_64_after_hwframe+0xe9/0x139
[12665.304172] ? entry_SYSCALL_64_after_hwframe+0xe2/0x139
[12665.304195] ? entry_SYSCALL_64_after_hwframe+0xdb/0x139
[12665.304218] ? entry_SYSCALL_64_after_hwframe+0xd4/0x139
[12665.304242] ? entry_SYSCALL_64_after_hwframe+0xcd/0x139
[12665.304265] ? entry_SYSCALL_64_after_hwframe+0xc6/0x139
[12665.304288] ? entry_SYSCALL_64_after_hwframe+0xbf/0x139
[12665.304312] ? entry_SYSCALL_64_after_hwframe+0xb8/0x139
[12665.304335] ? entry_SYSCALL_64_after_hwframe+0xb1/0x139
[12665.304358] SyS_ioctl+0x79/0x90
[12665.304374] ? entry_SYSCALL_64_after_hwframe+0x72/0x139
[12665.304397] entry_SYSCALL_64_fastpath+0x24/0xab
[12665.304417] RIP: 0033:0x7f2ec3750ef7
[12665.304433] RSP: 002b:00007fff99e31388 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[12665.304465] RAX: ffffffffffffffda RBX: 00007fff99e312f0 RCX: 00007f2ec3750ef7
[12665.304494] RDX: 0000000000000000 RSI: 0000000000004140 RDI: 0000000000000007
[12665.304522] RBP: 0000556ebc63fd60 R08: 0000556ebc640560 R09: 0000000000000000
[12665.304553] R10: 0000000000000001 R11: 0000000000000246 R12: 0000556ebc63fcf0
[12665.304584] R13: 0000000000000000 R14: 0000000000000007 R15: 0000000000000000
[12665.304612] Code: 01 00 00 44 89 eb 45 31 ed 45 31 db 66 41 89 1e 66 41 89 5e 0c 66 45 89 5e 0e 49 8b 49 08 49 63 d4 4d 85 c0 49 63 ff 48 8b 14 d1 <48> 8b 72 30 41 8d 14 37 41 89 56 04 48 63 d3 0f 84 ce 00 00 00
[12665.304713] RIP: ohci_queue_iso+0x47c/0x800 [firewire_ohci] RSP: ffffb5b8823d3ab8
[12665.304743] CR2: 0000000000000030
[12665.317701] ---[ end trace 9d55b056dd52a19f ]---
Fixes: f91c9d7610a ('ALSA: firewire-lib: cache maximum length of payload to reduce function calls')
Cc: <stable@vger.kernel.org> # v4.12+
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
In error path of snd_dice_stream_init_duplex(), stream data for incoming
packet can be left to be initialized.
This commit fixes it.
Fixes: 436b5abe2224 ('ALSA: dice: handle whole available isochronous streams')
Cc: <stable@vger.kernel.org> # v4.6+
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Back-merge 4.17-rc3 fixes for further development.
This will bump the base to 4.17-rc2, too.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
In early stage of firmware SDK, DICE seems to lose its backward
compatibility due to some registers on global address section. I found
this with Alesis Multimix 12 FireWire with ancient firmware (approx.
shipped version).
According to retrieved log from the unit, global section has 96 byte
space. On the other hand, current version of ALSA dice driver assumes
that all of supported unit has at least 100 byte space.
$ ./firewire-request /dev/fw1 read 0xffffe0000000 28
result: 000: 00 00 00 0a 00 00 00 18 00 00 00 22 00 00 00 8a
result: 010: 00 00 00 ac 00 00 01 12 00 00 00 00 00 00 00 00
result: 020: 00 00 00 00 00 00 00 00
This commit adds support for the ancient firmware. Check of global section
is loosened to accept the smaller space. The lack of information is
already compensated by hard-coded parameters.
I experienced that the latest version of Windows driver for this model
can't handle this unit, too. This means that TCAT releases firmware SDK
without backward compatibility for the ancient firmware.
Below list is a early history of driver/firmware package released by
Alesis. I investigated on wayback machine on Internet Archive:
* Unknown: PAL v1.0.41.2, firmware v1.0.3
* Mar 2006: PAL v1.54.0, firmware v1.0.4
* Dec 2006: PAL v2.0.0.2, firmware v2.0
* Jun 2007: PAL v3.0.41.5, firmware v2.0
* Jul 2007: PAL v3.0.56.2. firmware v2.0
* Jan 2008: PAL v3.0.81.1080, firmware v2.0
If I can assume that firmware version is the same as DICE version, DICE
version for the issued firmware may be v1.0.3. According to code base of
userspace driver project (FFADO), I can read DICE v1.0.4 supports global
space larger than 100 byte. I guess the smaller space of global section is
a feature of DICE v1.0.3.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
OUI for TC Electronic is 0x000166, for TC GROUP A/S. 0x001486 is for Echo
Digital Audio Corporation.
Fixes: 7cafc65b3aa1 ('ALSA: dice: force to add two pcm devices for listed models')
Cc: <stable@vger.kernel.org> # v4.6+
Reference: http://standards-oui.ieee.org/oui/oui.txt
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
- fix trace_hfi1_ctxt_info() to pass large struct by reference instead of by value
- convert 'type array[]' tracepoint arguments into 'type *array',
since compiler will warn that sizeof('type array[]') == sizeof('type *array')
and later should be used instead
The CAST_TO_U64 macro in the later patch will enforce that tracepoint
arguments can only be integers, pointers, or less than 8 byte structures.
Larger structures should be passed by reference.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:
for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
done
with de-mangling cleanups yet to come.
NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do. But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.
The next patch from Al will sort out the final differences, and we
should be all done.
Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Conflicts:
include/linux/compiler-clang.h
include/linux/compiler-gcc.h
include/linux/compiler-intel.h
include/uapi/linux/stddef.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
to READ_ONCE()/WRITE_ONCE()
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Add a jump target so that a bit of exception handling can be better reused
at the end of this function.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Add a jump target so that a bit of exception handling can be better reused
at the end of this function.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Drivers in ALSA firewire stack still includes some symbols which can be
moved to a section for read-only symbols.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
Conflicts:
sound/core/control.c
|
|
MOTU Audio Express is one of third generation in MOTU FireWire
series, produced in 2011. This model consists of three chips:
* TI TSB41AB2 (Physical layer for IEEE 1394 bus)
* Microchip USB3300 (Hi-Speed USB Device with ULPI interface)
* Xilinx Spartan-3A FPGA, XC3S400A (Link layer for IEEE 1394 bus, packet
processing and data block processing layer)
This commit adds support for this model. As I expected, it works with
current implementaion of protocol version 3. On the other hand, the unit
has a quirk to request subaction originated by any driver.
11:45:51.287643 firewire_ohci 0000:03:00.0: AT spd 2 tl 1f, ffc1 -> ffc0, -reserved-, QW req, fffff0000b14 = 02000200
11:45:51.289193 firewire_ohci 0000:03:00.0: AR spd 2 tl 1f, ffc0 -> ffc1, ack_complete, W resp
11:45:51.289381 fireire_core 0000:03:00.0: unsolicited response (source ffc0, tlabel 1f)
11:45:51.313071 firewire_ohci 0000:03:00.0: AT spd 2 tl 20, ffc1 -> ffc0, ack_pending , QW req, fffff0000b14 = 02000200
11:45:51.314539 firewire_ohci 0000:03:00.0: AR spd 2 tl 20, ffc0 -> ffc1, ack_complete, W resp
In 1394 OHCI (rev.1.1), after OUTPUT_LAST* descriptors is processed,
'xferStaus' field is filled with 'ContextControl[0:15]' (see clause 7.1.3).
5 bits in LSB side of the field has ack code in acknowledge from the unit
(see clause 7.2.2). A list of the code is shown in Table 3-2.
As long as I investigated, in a case of the '-reserved-' acknowledge
message from the unit, the field has 0x10. On the table, this value is
'Reserved for definition by future 1394 standards'. As long as I know,
any specifications of IEEE 1394 has no such extensions, thus the unit is
out of specification. Besides, I note that the unit does not always
acknowledge with the invalid code. I guess this is a bug of firmware. I
confirmed the bug in firmware version 1.04 and this is the latest one.
$ cd linux-firewire-utils
$ python2 ./src/crpp < /sys/bus/firewire/devices/fw1/config_rom
ROM header and bus information block
-----------------------------------------------------------------
400 0410a756 bus_info_length 4, crc_length 16, crc 42838
404 31333934 bus_name "1394"
408 20ff7000 irmc 0, cmc 0, isc 1, bmc 0, cyc_clk_acc 255, max_rec 7 (256)
40c 0001f200 company_id 0001f2 |
410 000a8a7b device_id 00000a8a7b | EUI-64 0001f200000a8a7b
root directory
-----------------------------------------------------------------
414 0004ef04 directory_length 4, crc 61188
418 030001f2 vendor
41c 0c0083c0 node capabilities per IEEE 1394
420 d1000002 --> unit directory at 428
424 8d000005 --> eui-64 leaf at 438
unit directory at 428
-----------------------------------------------------------------
428 00031680 directory_length 3, crc 5760
42c 120001f2 specifier id
430 13000033 version
434 17104800 model
eui-64 leaf at 438
-----------------------------------------------------------------
438 00025ef3 leaf_length 2, crc 24307
43c 0001f200 company_id 0001f2 |
440 000a8a7b device_id 00000a8a7b | EUI-64 0001f200000a8a7b
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
messages
In protocols of MOTU FireWire series, when transferring MIDI messages,
transmitter set existence flag to one byte on first several quadlets. The
position differs depending on protocols and models, however two cases are
confirmed; in 5th byte and 8th byte from MSB side.
This commit adds a series of specification flag to describe them. When
the existence flag is in the 5th byte, SND_MOTU_SPEC_[R|T]X_MIDI_2ND_Q is
used. Else, another set of the flag is used. Here, '_Q' means quadlet.
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|
|
initialization
When failing sound card registration after initializing stream data, this
module leaves allocated data in stream data. This commit fixes the bug.
Fixes: 9b2bb4f2f4a2 ('ALSA: firewire-motu: add stream management functionality')
Cc: <stable@vger.kernel.org> # v4.12+
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
|