summaryrefslogtreecommitdiff
path: root/security/keys/request_key.c
AgeCommit message (Collapse)AuthorFilesLines
2013-05-01KEYS: split call to call_usermodehelper_fns()Lucas De Marchi1-3/+10
Use call_usermodehelper_setup() + call_usermodehelper_exec() instead of calling call_usermodehelper_fns(). In case there's an OOM in this last function the cleanup function may not be called - in this case we would miss a call to key_put(). Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi> Cc: Oleg Nesterov <oleg@redhat.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <james.l.morris@oracle.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Tejun Heo <tj@kernel.org> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-17Merge branch 'for-linus' of ↵Linus Torvalds1-6/+15
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security Pull security subsystem updates from James Morris: "A quiet cycle for the security subsystem with just a few maintenance updates." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: Smack: create a sysfs mount point for smackfs Smack: use select not depends in Kconfig Yama: remove locking from delete path Yama: add RCU to drop read locking drivers/char/tpm: remove tasklet and cleanup KEYS: Use keyring_alloc() to create special keyrings KEYS: Reduce initial permissions on keys KEYS: Make the session and process keyrings per-thread seccomp: Make syscall skipping and nr changes more consistent key: Fix resource leak keys: Fix unreachable code KEYS: Add payload preparsing opportunity prior to key instantiate or update
2012-10-02KEYS: Reduce initial permissions on keysDavid Howells1-1/+10
Reduce the initial permissions on new keys to grant the possessor everything, view permission only to the user (so the keys can be seen in /proc/keys) and nothing else. This gives the creator a chance to adjust the permissions mask before other processes can access the new key or create a link to it. To aid with this, keyring_alloc() now takes a permission argument rather than setting the permissions itself. The following permissions are now set: (1) The user and user-session keyrings grant the user that owns them full permissions and grant a possessor everything bar SETATTR. (2) The process and thread keyrings grant the possessor full permissions but only grant the user VIEW. This permits the user to see them in /proc/keys, but not to do anything with them. (3) Anonymous session keyrings grant the possessor full permissions, but only grant the user VIEW and READ. This means that the user can see them in /proc/keys and can list them, but nothing else. Possibly READ shouldn't be provided either. (4) Named session keyrings grant everything an anonymous session keyring does, plus they grant the user LINK permission. The whole point of named session keyrings is that others can also subscribe to them. Possibly this should be a separate permission to LINK. (5) The temporary session keyring created by call_sbin_request_key() gets the same permissions as an anonymous session keyring. (6) Keys created by add_key() get VIEW, SEARCH, LINK and SETATTR for the possessor, plus READ and/or WRITE if the key type supports them. The used only gets VIEW now. (7) Keys created by request_key() now get the same as those created by add_key(). Reported-by: Lennart Poettering <lennart@poettering.net> Reported-by: Stef Walter <stefw@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com>
2012-10-02KEYS: Make the session and process keyrings per-threadDavid Howells1-5/+5
Make the session keyring per-thread rather than per-process, but still inherited from the parent thread to solve a problem with PAM and gdm. The problem is that join_session_keyring() will reject attempts to change the session keyring of a multithreaded program but gdm is now multithreaded before it gets to the point of starting PAM and running pam_keyinit to create the session keyring. See: https://bugs.freedesktop.org/show_bug.cgi?id=49211 The reason that join_session_keyring() will only change the session keyring under a single-threaded environment is that it's hard to alter the other thread's credentials to effect the change in a multi-threaded program. The problems are such as: (1) How to prevent two threads both running join_session_keyring() from racing. (2) Another thread's credentials may not be modified directly by this process. (3) The number of threads is uncertain whilst we're not holding the appropriate spinlock, making preallocation slightly tricky. (4) We could use TIF_NOTIFY_RESUME and key_replace_session_keyring() to get another thread to replace its keyring, but that means preallocating for each thread. A reasonable way around this is to make the session keyring per-thread rather than per-process and just document that if you want a common session keyring, you must get it before you spawn any threads - which is the current situation anyway. Whilst we're at it, we can the process keyring behave in the same way. This means we can clean up some of the ickyness in the creds code. Basically, after this patch, the session, process and thread keyrings are about inheritance rules only and not about sharing changes of keyring. Reported-by: Mantas M. <grawity@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Ray Strode <rstrode@redhat.com>
2012-09-14userns: Convert security/keys to the new userns infrastructureEric W. Biederman1-3/+3
- Replace key_user ->user_ns equality checks with kuid_has_mapping checks. - Use from_kuid to generate key descriptions - Use kuid_t and kgid_t and the associated helpers instead of uid_t and gid_t - Avoid potential problems with file descriptor passing by displaying keys in the user namespace of the opener of key status proc files. Cc: linux-security-module@vger.kernel.org Cc: keyrings@linux-nfs.org Cc: David Howells <dhowells@redhat.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-06-01kmod: convert two call sites to call_usermodehelper_fns()Boaz Harrosh1-10/+3
Both kernel/sys.c && security/keys/request_key.c where inlining the exact same code as call_usermodehelper_fns(); So simply convert these sites to directly use call_usermodehelper_fns(). Signed-off-by: Boaz Harrosh <bharrosh@panasas.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-24usermodehelper: kill umh_wait, renumber UMH_* constantsOleg Nesterov1-1/+1
No functional changes. It is not sane to use UMH_KILLABLE with enum umh_wait, but obviously we do not want another argument in call_usermodehelper_* helpers. Kill this enum, use the plain int. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-22KEYS: Fix error handling in construct_key_and_link()David Howells1-1/+2
Fix error handling in construct_key_and_link(). If construct_alloc_key() returns an error, it shouldn't pass out through the normal path as the key_serial() called by the kleave() statement will oops when it gets an error code in the pointer: BUG: unable to handle kernel paging request at ffffffffffffff84 IP: [<ffffffff8120b401>] request_key_and_link+0x4d7/0x52f .. Call Trace: [<ffffffff8120b52c>] request_key+0x41/0x75 [<ffffffffa00ed6e8>] cifs_get_spnego_key+0x206/0x226 [cifs] [<ffffffffa00eb0c9>] CIFS_SessSetup+0x511/0x1234 [cifs] [<ffffffffa00d9799>] cifs_setup_session+0x90/0x1ae [cifs] [<ffffffffa00d9c02>] cifs_get_smb_ses+0x34b/0x40f [cifs] [<ffffffffa00d9e05>] cifs_mount+0x13f/0x504 [cifs] [<ffffffffa00caabb>] cifs_do_mount+0xc4/0x672 [cifs] [<ffffffff8113ae8c>] mount_fs+0x69/0x155 [<ffffffff8114ff0e>] vfs_kern_mount+0x63/0xa0 [<ffffffff81150be2>] do_kern_mount+0x4d/0xdf [<ffffffff81152278>] do_mount+0x63c/0x69f [<ffffffff8115255c>] sys_mount+0x88/0xc2 [<ffffffff814fbdc2>] system_call_fastpath+0x16/0x1b Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-17KEYS/DNS: Fix ____call_usermodehelper() to not lose the session keyringDavid Howells1-2/+1
____call_usermodehelper() now erases any credentials set by the subprocess_inf::init() function. The problem is that commit 17f60a7da150 ("capabilites: allow the application of capability limits to usermode helpers") creates and commits new credentials with prepare_kernel_cred() after the call to the init() function. This wipes all keyrings after umh_keys_init() is called. The best way to deal with this is to put the init() call just prior to the commit_creds() call, and pass the cred pointer to init(). That means that umh_keys_init() and suchlike can modify the credentials _before_ they are published and potentially in use by the rest of the system. This prevents request_key() from working as it is prevented from passing the session keyring it set up with the authorisation token to /sbin/request-key, and so the latter can't assume the authority to instantiate the key. This causes the in-kernel DNS resolver to fail with ENOKEY unconditionally. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Eric Paris <eparis@redhat.com> Tested-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-27Merge branch 'docs-move' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/rdunlap/linux-docs * 'docs-move' of git://git.kernel.org/pub/scm/linux/kernel/git/rdunlap/linux-docs: Create Documentation/security/, move LSM-, credentials-, and keys-related files from Documentation/ to Documentation/security/, add Documentation/security/00-INDEX, and update all occurrences of Documentation/<moved_file> to Documentation/security/<moved_file>.
2011-05-20Create Documentation/security/,Randy Dunlap1-1/+1
move LSM-, credentials-, and keys-related files from Documentation/ to Documentation/security/, add Documentation/security/00-INDEX, and update all occurrences of Documentation/<moved_file> to Documentation/security/<moved_file>.
2011-03-17KEYS: Improve /proc/keysDavid Howells1-2/+1
Improve /proc/keys by: (1) Don't attempt to summarise the payload of a negated key. It won't have one. To this end, a helper function - key_is_instantiated() has been added that allows the caller to find out whether the key is positively instantiated (as opposed to being uninstantiated or negatively instantiated). (2) Do show keys that are negative, expired or revoked rather than hiding them. This requires an override flag (no_state_check) to be passed to search_my_process_keyrings() and keyring_search_aux() to suppress this check. Without this, keys that are possessed by the caller, but only grant permissions to the caller if possessed are skipped as the possession check fails. Keys that are visible due to user, group or other checks are visible with or without this patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2011-03-08KEYS: Add a new keyctl op to reject a key with a specified error codeDavid Howells1-1/+1
Add a new keyctl op to reject a key with a specified error code. This works much the same as negating a key, and so keyctl_negate_key() is made a special case of keyctl_reject_key(). The difference is that keyctl_negate_key() selects ENOKEY as the error to be reported. Typically the key would be rejected with EKEYEXPIRED, EKEYREVOKED or EKEYREJECTED, but this is not mandatory. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2011-01-26KEYS: Fix __key_link_end() quota fixup on errorDavid Howells1-1/+1
Fix __key_link_end()'s attempt to fix up the quota if an error occurs. There are two erroneous cases: Firstly, we always decrease the quota if the preallocated replacement keyring needs cleaning up, irrespective of whether or not we should (we may have replaced a pointer rather than adding another pointer). Secondly, we never clean up the quota if we added a pointer without the keyring storage being extended (we allocate multiple pointers at a time, even if we're not going to use them all immediately). We handle this by setting the bottom bit of the preallocation pointer in __key_link_begin() to indicate that the quota needs fixing up, which is then passed to __key_link() (which clears the whole thing) and __key_link_end(). Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-22KEYS: Fix up comments in key management codeDavid Howells1-43/+121
Fix up comments in the key management code. No functional changes. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-12-24KEYS: Don't call up_write() if __key_link_begin() returns an errorDavid Howells1-1/+0
In construct_alloc_key(), up_write() is called in the error path if __key_link_begin() fails, but this is incorrect as __key_link_begin() only returns with the nominated keyring locked if it returns successfully. Without this patch, you might see the following in dmesg: ===================================== [ BUG: bad unlock balance detected! ] ------------------------------------- mount.cifs/5769 is trying to release lock (&key->sem) at: [<ffffffff81201159>] request_key_and_link+0x263/0x3fc but there are no more locks to release! other info that might help us debug this: 3 locks held by mount.cifs/5769: #0: (&type->s_umount_key#41/1){+.+.+.}, at: [<ffffffff81131321>] sget+0x278/0x3e7 #1: (&ret_buf->session_mutex){+.+.+.}, at: [<ffffffffa0258e59>] cifs_get_smb_ses+0x35a/0x443 [cifs] #2: (root_key_user.cons_lock){+.+.+.}, at: [<ffffffff81201000>] request_key_and_link+0x10a/0x3fc stack backtrace: Pid: 5769, comm: mount.cifs Not tainted 2.6.37-rc6+ #1 Call Trace: [<ffffffff81201159>] ? request_key_and_link+0x263/0x3fc [<ffffffff81081601>] print_unlock_inbalance_bug+0xca/0xd5 [<ffffffff81083248>] lock_release_non_nested+0xc1/0x263 [<ffffffff81201159>] ? request_key_and_link+0x263/0x3fc [<ffffffff81201159>] ? request_key_and_link+0x263/0x3fc [<ffffffff81083567>] lock_release+0x17d/0x1a4 [<ffffffff81073f45>] up_write+0x23/0x3b [<ffffffff81201159>] request_key_and_link+0x263/0x3fc [<ffffffffa026fe9e>] ? cifs_get_spnego_key+0x61/0x21f [cifs] [<ffffffff812013c5>] request_key+0x41/0x74 [<ffffffffa027003d>] cifs_get_spnego_key+0x200/0x21f [cifs] [<ffffffffa026e296>] CIFS_SessSetup+0x55d/0x1273 [cifs] [<ffffffffa02589e1>] cifs_setup_session+0x90/0x1ae [cifs] [<ffffffffa0258e7e>] cifs_get_smb_ses+0x37f/0x443 [cifs] [<ffffffffa025a9e3>] cifs_mount+0x1aa1/0x23f3 [cifs] [<ffffffff8111fd94>] ? alloc_debug_processing+0xdb/0x120 [<ffffffffa027002c>] ? cifs_get_spnego_key+0x1ef/0x21f [cifs] [<ffffffffa024cc71>] cifs_do_mount+0x165/0x2b3 [cifs] [<ffffffff81130e72>] vfs_kern_mount+0xaf/0x1dc [<ffffffff81131007>] do_kern_mount+0x4d/0xef [<ffffffff811483b9>] do_mount+0x6f4/0x733 [<ffffffff8114861f>] sys_mount+0x88/0xc2 [<ffffffff8100ac42>] system_call_fastpath+0x16/0x1b Reported-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-and-Tested-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-06KEYS: request_key() should return -ENOKEY if the constructed key is negativeDavid Howells1-0/+2
request_key() should return -ENOKEY if the key it constructs has been negatively instantiated. Without this, request_key() can return an unusable key to its caller, and if the caller then does key_validate() that won't catch the problem. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-02KEYS: Reinstate lost passing of process keyring ID in call_sbin_request_key()Justin P. Mattock1-0/+1
In commit bb952bb98a7e479262c7eb25d5592545a3af147d there was the accidental deletion of a statement from call_sbin_request_key() to render the process keyring ID to a text string so that it can be passed to /sbin/request-key. With gcc 4.6.0 this causes the following warning: CC security/keys/request_key.o security/keys/request_key.c: In function 'call_sbin_request_key': security/keys/request_key.c:102:15: warning: variable 'prkey' set but not used This patch reinstates that statement. Without this statement, /sbin/request-key will get some random rubbish from the stack as that parameter. Signed-off-by: Justin P. Mattock <justinmattock@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2010-05-27umh: creds: convert call_usermodehelper_keys() to use subprocess_info->init()Oleg Nesterov1-0/+32
call_usermodehelper_keys() uses call_usermodehelper_setkeys() to change subprocess_info->cred in advance. Now that we have info->init() we can change this code to set tgcred->session_keyring in context of execing kernel thread. Note: since currently call_usermodehelper_keys() is never called with UMH_NO_WAIT, call_usermodehelper_keys()->key_get() and umh_keys_cleanup() are not really needed, we could rely on install_session_keyring_to_cred() which does key_get() on success. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-06KEYS: Do preallocation for __key_link()David Howells1-16/+31
Do preallocation for __key_link() so that the various callers in request_key.c can deal with any errors from this source before attempting to construct a key. This allows them to assume that the actual linkage step is guaranteed to be successful. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2010-05-06Merge branch 'master' into nextJames Morris1-1/+1
Conflicts: security/keys/keyring.c Resolved conflict with whitespace fix in find_keyring_by_name() Signed-off-by: James Morris <jmorris@namei.org>
2010-05-06KEYS: Better handling of errors from construct_alloc_key()David Howells1-2/+22
Errors from construct_alloc_key() shouldn't just be ignored in the way they are by construct_key_and_link(). The only error that can be ignored so is EINPROGRESS as that is used to indicate that we've found a key and don't need to construct one. We don't, however, handle ENOMEM, EDQUOT or EACCES to indicate allocation failures of one sort or another. Reported-by: Vegard Nossum <vegard.nossum@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2010-05-05KEYS: call_sbin_request_key() must write lock keyrings before modifying themDavid Howells1-1/+1
call_sbin_request_key() creates a keyring and then attempts to insert a link to the authorisation key into that keyring, but does so without holding a write lock on the keyring semaphore. It will normally get away with this because it hasn't told anyone that the keyring exists yet. The new keyring, however, has had its serial number published, which means it can be accessed directly by that handle. This was found by a previous patch that adds RCU lockdep checks to the code that reads the keyring payload pointer, which includes a check that the keyring semaphore is actually locked. Without this patch, the following command: keyctl request2 user b a @s will provoke the following lockdep warning is displayed in dmesg: =================================================== [ INFO: suspicious rcu_dereference_check() usage. ] --------------------------------------------------- security/keys/keyring.c:727 invoked rcu_dereference_check() without protection! other info that might help us debug this: rcu_scheduler_active = 1, debug_locks = 0 2 locks held by keyctl/2076: #0: (key_types_sem){.+.+.+}, at: [<ffffffff811a5b29>] key_type_lookup+0x1c/0x71 #1: (keyring_serialise_link_sem){+.+.+.}, at: [<ffffffff811a6d1e>] __key_link+0x4d/0x3c5 stack backtrace: Pid: 2076, comm: keyctl Not tainted 2.6.34-rc6-cachefs #54 Call Trace: [<ffffffff81051fdc>] lockdep_rcu_dereference+0xaa/0xb2 [<ffffffff811a6d1e>] ? __key_link+0x4d/0x3c5 [<ffffffff811a6e6f>] __key_link+0x19e/0x3c5 [<ffffffff811a5952>] ? __key_instantiate_and_link+0xb1/0xdc [<ffffffff811a59bf>] ? key_instantiate_and_link+0x42/0x5f [<ffffffff811aa0dc>] call_sbin_request_key+0xe7/0x33b [<ffffffff8139376a>] ? mutex_unlock+0x9/0xb [<ffffffff811a5952>] ? __key_instantiate_and_link+0xb1/0xdc [<ffffffff811a59bf>] ? key_instantiate_and_link+0x42/0x5f [<ffffffff811aa6fa>] ? request_key_auth_new+0x1c2/0x23c [<ffffffff810aaf15>] ? cache_alloc_debugcheck_after+0x108/0x173 [<ffffffff811a9d00>] ? request_key_and_link+0x146/0x300 [<ffffffff810ac568>] ? kmem_cache_alloc+0xe1/0x118 [<ffffffff811a9e45>] request_key_and_link+0x28b/0x300 [<ffffffff811a89ac>] sys_request_key+0xf7/0x14a [<ffffffff81052c0b>] ? trace_hardirqs_on_caller+0x10c/0x130 [<ffffffff81394fb9>] ? trace_hardirqs_on_thunk+0x3a/0x3f [<ffffffff81001eeb>] system_call_fastpath+0x16/0x1b Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2010-04-28keys: the request_key() syscall should link an existing key to the dest keyringDavid Howells1-1/+8
The request_key() system call and request_key_and_link() should make a link from an existing key to the destination keyring (if supplied), not just from a new key to the destination keyring. This can be tested by: ring=`keyctl newring fred @s` keyctl request2 user debug:a a keyctl request user debug:a $ring keyctl list $ring If it says: keyring is empty then it didn't work. If it shows something like: 1 key in keyring: 1070462727: --alswrv 0 0 user: debug:a then it did. request_key() system call is meant to recursively search all your keyrings for the key you desire, and, optionally, if it doesn't exist, call out to userspace to create one for you. If request_key() finds or creates a key, it should, optionally, create a link to that key from the destination keyring specified. Therefore, if, after a successful call to request_key() with a desination keyring specified, you see the destination keyring empty, the code didn't work correctly. If you see the found key in the keyring, then it did - which is what the patch is required for. Signed-off-by: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-24keys: fix an RCU warningDavid Howells1-5/+8
Fix the following RCU warning: =================================================== [ INFO: suspicious rcu_dereference_check() usage. ] --------------------------------------------------- security/keys/request_key.c:116 invoked rcu_dereference_check() without protection! This was caused by doing: [root@andromeda ~]# keyctl newring fred @s 539196288 [root@andromeda ~]# keyctl request2 user a a 539196288 request_key: Required key not available Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-09keys: Handle there being no fallback destination keyring for request_key()David Howells1-3/+6
When request_key() is called, without there being any standard process keyrings on which to fall back if a destination keyring is not specified, an oops is liable to occur when construct_alloc_key() calls down_write() on dest_keyring's semaphore. Due to function inlining this may be seen as an oops in down_write() as called from request_key_and_link(). This situation crops up during boot, where request_key() is called from within the kernel (such as in CIFS mounts) where nobody is actually logged in, and so PAM has not had a chance to create a session keyring and user keyrings to act as the fallback. To fix this, make construct_alloc_key() not attempt to cache a key if there is no fallback key if no destination keyring is given specifically. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-27keys: distinguish per-uid keys in different namespacesSerge E. Hallyn1-1/+1
per-uid keys were looked by uid only. Use the user namespace to distinguish the same uid in different namespaces. This does not address key_permission. So a task can for instance try to join a keyring owned by the same uid in another namespace. That will be handled by a separate patch. Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Inaugurate COW credentialsDavid Howells1-11/+18
Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Separate per-task-group keyrings from signal_structDavid Howells1-20/+14
Separate per-task-group keyrings from signal_struct and dangle their anchor from the cred struct rather than the signal_struct. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Wrap current->cred and a few other accessorsDavid Howells1-5/+6
Wrap current->cred and a few other accessors to hide their actual implementation. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Separate task security context from task_structDavid Howells1-8/+10
Separate the task security context from task_struct. At this point, the security data is temporarily embedded in the task_struct with two pointers pointing to it. Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in entry.S via asm-offsets. With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14KEYS: Alter use of key instantiation link-to-keyring argumentDavid Howells1-24/+51
Alter the use of the key instantiation and negation functions' link-to-keyring arguments. Currently this specifies a keyring in the target process to link the key into, creating the keyring if it doesn't exist. This, however, can be a problem for copy-on-write credentials as it means that the instantiating process can alter the credentials of the requesting process. This patch alters the behaviour such that: (1) If keyctl_instantiate_key() or keyctl_negate_key() are given a specific keyring by ID (ringid >= 0), then that keyring will be used. (2) If keyctl_instantiate_key() or keyctl_negate_key() are given one of the special constants that refer to the requesting process's keyrings (KEY_SPEC_*_KEYRING, all <= 0), then: (a) If sys_request_key() was given a keyring to use (destringid) then the key will be attached to that keyring. (b) If sys_request_key() was given a NULL keyring, then the key being instantiated will be attached to the default keyring as set by keyctl_set_reqkey_keyring(). (3) No extra link will be made. Decision point (1) follows current behaviour, and allows those instantiators who've searched for a specifically named keyring in the requestor's keyring so as to partition the keys by type to still have their named keyrings. Decision point (2) allows the requestor to make sure that the key or keys that get produced by request_key() go where they want, whilst allowing the instantiator to request that the key is retained. This is mainly useful for situations where the instantiator makes a secondary request, the key for which should be retained by the initial requestor: +-----------+ +--------------+ +--------------+ | | | | | | | Requestor |------->| Instantiator |------->| Instantiator | | | | | | | +-----------+ +--------------+ +--------------+ request_key() request_key() This might be useful, for example, in Kerberos, where the requestor requests a ticket, and then the ticket instantiator requests the TGT, which someone else then has to go and fetch. The TGT, however, should be retained in the keyrings of the requestor, not the first instantiator. To make this explict an extra special keyring constant is also added. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14KEYS: Disperse linux/key_ui.hDavid Howells1-0/+2
Disperse the bits of linux/key_ui.h as the reason they were put here (keyfs) didn't get in. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14CRED: Wrap task credential accesses in the key management codeDavid Howells1-5/+5
Wrap access to task credentials so that they can be separated more easily from the task_struct during the introduction of COW creds. Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id(). Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more sense to use RCU directly rather than a convenient wrapper; these will be addressed by later patches. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-04-29keys: explicitly include required slab.h header file.Robert P. J. Day1-0/+1
Since these two source files invoke kmalloc(), they should explicitly include <linux/slab.h>. Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29keys: allow the callout data to be passed as a blob rather than a stringDavid Howells1-19/+30
Allow the callout data to be passed as a blob rather than a string for internal kernel services that call any request_key_*() interface other than request_key(). request_key() itself still takes a NUL-terminated string. The functions that change are: request_key_with_auxdata() request_key_async() request_key_async_with_auxdata() Signed-off-by: David Howells <dhowells@redhat.com> Cc: Paul Moore <paul.moore@hp.com> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: James Morris <jmorris@namei.org> Cc: Kevin Coffman <kwc@citi.umich.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-07Convert ERR_PTR(PTR_ERR(p)) instances to ERR_CAST(p)David Howells1-1/+1
Convert instances of ERR_PTR(PTR_ERR(p)) to ERR_CAST(p) using: perl -spi -e 's/ERR_PTR[(]PTR_ERR[(](.*)[)][)]/ERR_CAST(\1)/' `grep -rl 'ERR_PTR[(]*PTR_ERR' fs crypto net security` Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17KEYS: Make request_key() and co fundamentally asynchronousDavid Howells1-285/+271
Make request_key() and co fundamentally asynchronous to make it easier for NFS to make use of them. There are now accessor functions that do asynchronous constructions, a wait function to wait for construction to complete, and a completion function for the key type to indicate completion of construction. Note that the construction queue is now gone. Instead, keys under construction are linked in to the appropriate keyring in advance, and that anyone encountering one must wait for it to be complete before they can use it. This is done automatically for userspace. The following auxiliary changes are also made: (1) Key type implementation stuff is split from linux/key.h into linux/key-type.h. (2) AF_RXRPC provides a way to allocate null rxrpc-type keys so that AFS does not need to call key_instantiate_and_link() directly. (3) Adjust the debugging macros so that they're -Wformat checked even if they are disabled, and make it so they can be enabled simply by defining __KDEBUG to be consistent with other code of mine. (3) Documentation. [alan@lxorguk.ukuu.org.uk: keys: missing word in documentation] Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-18usermodehelper: Tidy up waitingJeremy Fitzhardinge1-1/+2
Rather than using a tri-state integer for the wait flag in call_usermodehelper_exec, define a proper enum, and use that. I've preserved the integer values so that any callers I've missed should still work OK. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Andi Kleen <ak@suse.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Bjorn Helgaas <bjorn.helgaas@hp.com> Cc: Joel Becker <joel.becker@oracle.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: David Howells <dhowells@redhat.com>
2006-06-29[PATCH] Keys: Allow in-kernel key requestor to pass auxiliary data to upcallerDavid Howells1-10/+34
The proposed NFS key type uses its own method of passing key requests to userspace (upcalling) rather than invoking /sbin/request-key. This is because the responsible userspace daemon should already be running and will be contacted through rpc_pipefs. This patch permits the NFS filesystem to pass auxiliary data to the upcall operation (struct key_type::request_key) so that the upcaller can use a pre-existing communications channel more easily. Signed-off-by: David Howells <dhowells@redhat.com> Acked-By: Kevin Coffman <kwc@citi.umich.edu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-26[PATCH] keys: sort out key quota systemDavid Howells1-15/+21
Add the ability for key creation to overrun the user's quota in some circumstances - notably when a session keyring is created and assigned to a process that didn't previously have one. This means it's still possible to log in, should PAM require the creation of a new session keyring, and fix an overburdened key quota. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23[PATCH] selinux: add hooks for key subsystemMichael LeMay1-2/+4
Introduce SELinux hooks to support the access key retention subsystem within the kernel. Incorporate new flask headers from a modified version of the SELinux reference policy, with support for the new security class representing retained keys. Extend the "key_alloc" security hook with a task parameter representing the intended ownership context for the key being allocated. Attach security information to root's default keyrings within the SELinux initialization routine. Has passed David's testsuite. Signed-off-by: Michael LeMay <mdlemay@epoch.ncsc.mil> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: James Morris <jmorris@namei.org> Acked-by: Chris Wright <chrisw@sous-sol.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-09[PATCH] keys: Permit running process to instantiate keysDavid Howells1-58/+50
Make it possible for a running process (such as gssapid) to be able to instantiate a key, as was requested by Trond Myklebust for NFS4. The patch makes the following changes: (1) A new, optional key type method has been added. This permits a key type to intercept requests at the point /sbin/request-key is about to be spawned and do something else with them - passing them over the rpc_pipefs files or netlink sockets for instance. The uninstantiated key, the authorisation key and the intended operation name are passed to the method. (2) The callout_info is no longer passed as an argument to /sbin/request-key to prevent unauthorised viewing of this data using ps or by looking in /proc/pid/cmdline. This means that the old /sbin/request-key program will not work with the patched kernel as it will expect to see an extra argument that is no longer there. A revised keyutils package will be made available tomorrow. (3) The callout_info is now attached to the authorisation key. Reading this key will retrieve the information. (4) A new field has been added to the task_struct. This holds the authorisation key currently active for a thread. Searches now look here for the caller's set of keys rather than looking for an auth key in the lowest level of the session keyring. This permits a thread to be servicing multiple requests at once and to switch between them. Note that this is per-thread, not per-process, and so is usable in multithreaded programs. The setting of this field is inherited across fork and exec. (5) A new keyctl function (KEYCTL_ASSUME_AUTHORITY) has been added that permits a thread to assume the authority to deal with an uninstantiated key. Assumption is only permitted if the authorisation key associated with the uninstantiated key is somewhere in the thread's keyrings. This function can also clear the assumption. (6) A new magic key specifier has been added to refer to the currently assumed authorisation key (KEY_SPEC_REQKEY_AUTH_KEY). (7) Instantiation will only proceed if the appropriate authorisation key is assumed first. The assumed authorisation key is discarded if instantiation is successful. (8) key_validate() is moved from the file of request_key functions to the file of permissions functions. (9) The documentation is updated. From: <Valdis.Kletnieks@vt.edu> Build fix. Signed-off-by: David Howells <dhowells@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: Alexander Zangerl <az@bond.edu.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-09[PATCH] Keys: Add request-key process documentationDavid Howells1-0/+2
The attached patch adds documentation for the process by which request-key works, including how it permits helper processes to gain access to the requestor's keyrings. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-28[PATCH] Keys: Add possessor permissions to keys [try #3]David Howells1-7/+29
The attached patch adds extra permission grants to keys for the possessor of a key in addition to the owner, group and other permissions bits. This makes SUID binaries easier to support without going as far as labelling keys and key targets using the LSM facilities. This patch adds a second "pointer type" to key structures (struct key_ref *) that can have the bottom bit of the address set to indicate the possession of a key. This is propagated through searches from the keyring to the discovered key. It has been made a separate type so that the compiler can spot attempts to dereference a potentially incorrect pointer. The "possession" attribute can't be attached to a key structure directly as it's not an intrinsic property of a key. Pointers to keys have been replaced with struct key_ref *'s wherever possession information needs to be passed through. This does assume that the bottom bit of the pointer will always be zero on return from kmem_cache_alloc(). The key reference type has been made into a typedef so that at least it can be located in the sources, even though it's basically a pointer to an undefined type. I've also renamed the accessor functions to be more useful, and all reference variables should now end in "_ref". Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-04[PATCH] Keys: Fix key management syscall interface bugsDavid Howells1-1/+1
This fixes five bugs in the key management syscall interface: (1) add_key() returns 0 rather than EINVAL if the key type is "". Checking the key type isn't "" should be left to lookup_user_key(). (2) request_key() returns ENOKEY rather than EPERM if the key type begins with a ".". lookup_user_key() can't do this because internal key types begin with a ".". (3) Key revocation always returns 0, even if it fails. (4) Key read can return EAGAIN rather than EACCES under some circumstances. A key is permitted to by read by a process if it doesn't grant read access, but it does grant search access and it is in the process's keyrings. That search returns EAGAIN if it fails, and this needs translating to EACCES. (5) request_key() never adds the new key to the destination keyring if one is supplied. The wrong macro was being used to test for an error condition: PTR_ERR() will always return true, whether or not there's an error; this should've been IS_ERR(). Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Linus Torvalds <torvalds@osdl.org>
2005-06-24[PATCH] Keys: Make request-key create an authorisation keyDavid Howells1-32/+150
The attached patch makes the following changes: (1) There's a new special key type called ".request_key_auth". This is an authorisation key for when one process requests a key and another process is started to construct it. This type of key cannot be created by the user; nor can it be requested by kernel services. Authorisation keys hold two references: (a) Each refers to a key being constructed. When the key being constructed is instantiated the authorisation key is revoked, rendering it of no further use. (b) The "authorising process". This is either: (i) the process that called request_key(), or: (ii) if the process that called request_key() itself had an authorisation key in its session keyring, then the authorising process referred to by that authorisation key will also be referred to by the new authorisation key. This means that the process that initiated a chain of key requests will authorise the lot of them, and will, by default, wind up with the keys obtained from them in its keyrings. (2) request_key() creates an authorisation key which is then passed to /sbin/request-key in as part of a new session keyring. (3) When request_key() is searching for a key to hand back to the caller, if it comes across an authorisation key in the session keyring of the calling process, it will also search the keyrings of the process specified therein and it will use the specified process's credentials (fsuid, fsgid, groups) to do that rather than the calling process's credentials. This allows a process started by /sbin/request-key to find keys belonging to the authorising process. (4) A key can be read, even if the process executing KEYCTL_READ doesn't have direct read or search permission if that key is contained within the keyrings of a process specified by an authorisation key found within the calling process's session keyring, and is searchable using the credentials of the authorising process. This allows a process started by /sbin/request-key to read keys belonging to the authorising process. (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or KEYCTL_NEGATE will specify a keyring of the authorising process, rather than the process doing the instantiation. (6) One of the process keyrings can be nominated as the default to which request_key() should attach new keys if not otherwise specified. This is done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_* constants. The current setting can also be read using this call. (7) request_key() is partially interruptible. If it is waiting for another process to finish constructing a key, it can be interrupted. This permits a request-key cycle to be broken without recourse to rebooting. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24[PATCH] Keys: Use RCU to manage session keyring pointerDavid Howells1-4/+3
The attached patch uses RCU to manage the session keyring pointer in struct signal_struct. This means that searching need not disable interrupts and get a the sighand spinlock to access this pointer. Furthermore, by judicious use of rcu_read_(un)lock(), this patch also avoids the need to take and put refcounts on the session keyring itself, thus saving on even more atomic ops. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24[PATCH] Keys: Pass session keyring to call_usermodehelper()David Howells1-1/+1
The attached patch makes it possible to pass a session keyring through to the process spawned by call_usermodehelper(). This allows patch 3/3 to pass an authorisation key through to /sbin/request-key, thus permitting better access controls when doing just-in-time key creation. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-24[PATCH] keys: Discard key spinlock and use RCU for key payloadDavid Howells1-17/+15
The attached patch changes the key implementation in a number of ways: (1) It removes the spinlock from the key structure. (2) The key flags are now accessed using atomic bitops instead of write-locking the key spinlock and using C bitwise operators. The three instantiation flags are dealt with with the construction semaphore held during the request_key/instantiate/negate sequence, thus rendering the spinlock superfluous. The key flags are also now bit numbers not bit masks. (3) The key payload is now accessed using RCU. This permits the recursive keyring search algorithm to be simplified greatly since no locks need be taken other than the usual RCU preemption disablement. Searching now does not require any locks or semaphores to be held; merely that the starting keyring be pinned. (4) The keyring payload now includes an RCU head so that it can be disposed of by call_rcu(). This requires that the payload be copied on unlink to prevent introducing races in copy-down vs search-up. (5) The user key payload is now a structure with the data following it. It includes an RCU head like the keyring payload and for the same reason. It also contains a data length because the data length in the key may be changed on another CPU whilst an RCU protected read is in progress on the payload. This would then see the supposed RCU payload and the on-key data length getting out of sync. I'm tempted to drop the key's datalen entirely, except that it's used in conjunction with quota management and so is a little tricky to get rid of. (6) Update the keys documentation. Signed-Off-By: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>