Age | Commit message (Collapse) | Author | Files | Lines |
|
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6: (1232 commits)
iucv: Fix bad merging.
net_sched: Add size table for qdiscs
net_sched: Add accessor function for packet length for qdiscs
net_sched: Add qdisc_enqueue wrapper
highmem: Export totalhigh_pages.
ipv6 mcast: Omit redundant address family checks in ip6_mc_source().
net: Use standard structures for generic socket address structures.
ipv6 netns: Make several "global" sysctl variables namespace aware.
netns: Use net_eq() to compare net-namespaces for optimization.
ipv6: remove unused macros from net/ipv6.h
ipv6: remove unused parameter from ip6_ra_control
tcp: fix kernel panic with listening_get_next
tcp: Remove redundant checks when setting eff_sacks
tcp: options clean up
tcp: Fix MD5 signatures for non-linear skbs
sctp: Update sctp global memory limit allocations.
sctp: remove unnecessary byteshifting, calculate directly in big-endian
sctp: Allow only 1 listening socket with SO_REUSEADDR
sctp: Do not leak memory on multiple listen() calls
sctp: Support ipv6only AF_INET6 sockets.
...
|
|
Move the line disciplines towards a conventional ->ops arrangement. For
the moment the actual 'tty_ldisc' struct in the tty is kept as part of
the tty struct but this can then be changed if it turns out that when it
all settles down we want to refcount ldiscs separately to the tty.
Pull the ldisc code out of /proc and put it with our ldisc code.
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/holtmann/bluetooth-2.6
|
|
When requested the L2CAP layer will now enforce authentication and
encryption on outgoing connections. The usefulness of this feature
is kinda limited since it will not allow proper connection ownership
tracking until the authentication procedure has been finished. This
is a limitation of Bluetooth 2.0 and before and can only be fixed by
using Simple Pairing.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
It has been reported that some eSCO capable headsets are not able to
connect properly. The real reason for this is unclear at the moment. So
for easier testing add a module parameter to disable eSCO connection
creation.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When using the HIDP or BNEP kernel support, the user-space needs to
know if the connection has been terminated for some reasons. Wake up
the application if that happens. Otherwise kernel and user-space are
no longer on the same page and weird behaviors can happen.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When an incoming RFCOMM socket connection gets converted into a TTY,
it can happen that packets are lost. This mainly happens with the
Handsfree profile where the remote side starts sending data right
away. The problem is that these packets are in the socket receive
queue. So when creating the TTY make sure to copy all pending packets
from the socket receive queue to a private queue inside the TTY.
To make this actually work, the flow control on the newly created TTY
will be disabled and only enabled again when the TTY is opened by an
application. And right before that, the pending packets will be put
into the TTY flip buffer.
Signed-off-by: Denis Kenzior <denis.kenzior@trolltech.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When switching a RFCOMM socket to a TTY, the remote modem status might
be needed later. Currently it is lost since the original configuration
is done via the socket interface. So store the modem status and reply
it when the socket has been converted to a TTY.
Signed-off-by: Denis Kenzior <denis.kenzior@trolltech.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
While the RFCOMM TTY emulation can act like a real serial port, in
reality it is not used like this. So to not mess up stupid applications,
use the non-canonical mode by default.
Signed-off-by: Denis Kenzior <denis.kenzior@trolltech.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
With all the Bluetooth 2.1 changes and the support for Simple Pairing,
it is important to update the Bluetooth core version number.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When attaching Bluetooth low-level connections to the bus, the bus name
is constructed from the remote address since at that time the connection
handle is not assigned yet. This has worked so far, but also caused a
lot of troubles. It is better to postpone the creation of the sysfs
entry to the time when the connection actually has been established
and then use its connection handle as unique identifier.
This also fixes the case where two different adapters try to connect
to the same remote device.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Almost every protocol family supports the TIOCOUTQ and TIOCINQ ioctls
and even Bluetooth could make use of them. When implementing audio
streaming and integration with GStreamer or PulseAudio they will allow
a better timing and synchronization.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Enable the common timestamp functionality that the network subsystem
provides for L2CAP, RFCOMM and SCO sockets. It is possible to either
use SO_TIMESTAMP or the IOCTLs to retrieve the timestamp of the
current packet.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
With the Simple Pairing support, the authentication requirements are
an explicit setting during the bonding process. Track and enforce the
requirements and allow higher layers like L2CAP and RFCOMM to increase
them if needed.
This patch introduces a new IOCTL that allows to query the current
authentication requirements. It is also possible to detect Simple
Pairing support in the kernel this way.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
With Bluetooth 2.1 and Simple Pairing the requirement is that any new
connection needs to be authenticated and that encryption has been
switched on before allowing L2CAP to use it. So make sure that all
the requirements are fulfilled and otherwise drop the connection with
a minimal disconnect timeout of 10 milliseconds.
This change only affects Bluetooth 2.1 devices and Simple Pairing
needs to be enabled locally and in the remote host stack. The previous
changes made sure that these information are discovered before any
kind of authentication and encryption is triggered.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The Bluetooth technology introduces new features on a regular basis
and for some of them it is important that the hardware on both sides
support them. For features like Simple Pairing it is important that
the host stacks on both sides have switched this feature on. To make
valid decisions, a config stage during ACL link establishment has been
introduced that retrieves remote features and if needed also the remote
extended features (known as remote host features) before signalling
this link as connected.
This change introduces full reference counting of incoming and outgoing
ACL links and the Bluetooth core will disconnect both if no owner of it
is present. To better handle interoperability during the pairing phase
the disconnect timeout for incoming connections has been increased to
10 seconds. This is five times more than for outgoing connections.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Since the remote Simple Pairing mode is stored together with the
inquiry cache, it makes sense to show it together with the other
information.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The Simple Pairing process can only be used if both sides have the
support enabled in the host stack. The current Bluetooth specification
has three ways to detect this support.
If an Extended Inquiry Result has been sent during inquiry then it
is safe to assume that Simple Pairing is enabled. It is not allowed
to enable Extended Inquiry without Simple Pairing. During the remote
name request phase a notification with the remote host supported
features will be sent to indicate Simple Pairing support. Also the
second page of the remote extended features can indicate support for
Simple Pairing.
For all three cases the value of remote Simple Pairing mode is stored
in the inquiry cache for later use.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The Simple Pairing feature is optional and needs to be enabled by the
host stack first. The Linux kernel relies on the Bluetooth daemon to
either enable or disable it, but at any time it needs to know the
current state of the Simple Pairing mode. So track any changes made
by external entities and store the current mode in the HCI device
structure.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
During the Simple Pairing process the HCI disconnect timer must be
disabled. The way to do this is by holding a reference count of the
HCI connection. The Simple Pairing process on both sides starts with
an IO Capabilities Request and ends with Simple Pairing Complete.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The class of device value can only be retrieved via inquiry or during
an incoming connection request. Outgoing connections can't ask for the
class of device. To compensate for this the value is stored and copied
via the inquiry cache, but currently only updated via inquiry. This
update should also happen during an incoming connection request.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Some minor cosmetic cleanups to the HCI event handling to make the
code easier to read and understand.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The Bluetooth specification supports the default link policy settings
on a per host controller basis. For every new connection the link
manager would then use these settings. It is better to use this instead
of bothering the controller on every connection setup to overwrite the
default settings.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The connection packet type can be changed after the connection has been
established and thus needs to be properly tracked to ensure that the
host stack has always correct and valid information about it.
On incoming connections the Bluetooth core switches the supported packet
types to the configured list for this controller. However the usefulness
of this feature has been questioned a lot. The general consent is that
every Bluetooth host stack should enable as many packet types as the
hardware actually supports and leave the decision to the link manager
software running on the Bluetooth chip.
When running on Bluetooth 2.0 or later hardware, don't change the packet
type for incoming connections anymore. This hardware likely supports
Enhanced Data Rate and thus leave it completely up to the link manager
to pick the best packet type.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When trying to establish an eSCO link between two devices then it can
happen that the remote device falls back to a SCO link. Currently this
case is not handled correctly and the message dispatching will break
since it is looking for eSCO packets. So in case the configured link
falls back to SCO overwrite the link type with the correct value.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The authentication status is not communicated to both parties. This is
actually a flaw in the Bluetooth specification. Only the requesting side
really knows if the authentication was successful or not. This piece of
information is however needed on the other side to know if it has to
trigger the authentication procedure or not. Worst case is that both
sides will request authentication at different times, but this should
be avoided since it costs extra time when setting up a new connection.
For Bluetooth encryption it is required to authenticate the link first
and the encryption status is communicated to both sides. So when a link
is switched to encryption it is possible to update the authentication
status since it implies an authenticated link.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
The Bluetooth specification allows to enable or disable the encryption
of an ACL link at any time by either the peer or the remote device. If
a L2CAP or RFCOMM connection requested an encrypted link, they will now
disconnect that link if the encryption gets disabled. Higher protocols
that don't care about encryption (like SDP) are not affected.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Recent tests with various Bluetooth headsets have shown that some of
them don't enforce authentication and encryption when connecting. All
of them leave it up to the host stack to enforce it. Non of them should
allow unencrypted connections, but that is how it is. So in case the
link mode settings require authentication and/or encryption it will now
also be enforced on outgoing RFCOMM connections. Previously this was
only done for incoming connections.
This support has a small drawback from a protocol level point of view
since the host stack can't really tell with 100% certainty if a remote
side is already authenticated or not. So if both sides are configured
to enforce authentication it will be requested twice. Most Bluetooth
chips are caching this information and thus no extra authentication
procedure has to be triggered over-the-air, but it can happen.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Getting the remote L2CAP features mask is really important, but doing
this as less intrusive as possible is tricky. To play nice with older
systems and Bluetooth qualification testing, the features mask is now
only retrieved in two specific cases and only once per lifetime of an
ACL link.
When trying to establish a L2CAP connection and the remote features mask
is unknown, the L2CAP information request is sent when the ACL link goes
into connected state. This applies only to outgoing connections and also
only for the connection oriented channels.
The second case is when a connection request has been received. In this
case a connection response with the result pending and the information
request will be send. After receiving an information response or if the
timeout gets triggered, the normal connection setup process with security
setup will be initiated.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
|
This patch removes CVS keywords that weren't updated for a long time
from comments.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
There's logic in __rfcomm_dlc_close:
rfcomm_dlc_lock(d);
d->state = BT_CLOSED;
d->state_changed(d, err);
rfcomm_dlc_unlock(d);
In rfcomm_dev_state_change, it's possible that rfcomm_dev_put try to
take the dlc lock, then we will deadlock.
Here fixed it by unlock dlc before rfcomm_dev_get in
rfcomm_dev_state_change.
why not unlock just before rfcomm_dev_put? it's because there's
another problem. rfcomm_dev_get/rfcomm_dev_del will take
rfcomm_dev_lock, but in rfcomm_dev_add the lock order is :
rfcomm_dev_lock --> dlc lock
so I unlock dlc before the taken of rfcomm_dev_lock.
Actually it's a regression caused by commit
1905f6c736cb618e07eca0c96e60e3c024023428 ("bluetooth :
__rfcomm_dlc_close lock fix"), the dlc state_change could be two
callbacks : rfcomm_sk_state_change and rfcomm_dev_state_change. I
missed the rfcomm_sk_state_change that time.
Thanks Arjan van de Ven <arjan@linux.intel.com> for the effort in
commit 4c8411f8c115def968820a4df6658ccfd55d7f1a ("bluetooth: fix
locking bug in the rfcomm socket cleanup handling") but he missed the
rfcomm_dev_state_change lock issue.
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
in net/bluetooth/rfcomm/sock.c, rfcomm_sk_state_change() does the
following operation:
if (parent && sock_flag(sk, SOCK_ZAPPED)) {
/* We have to drop DLC lock here, otherwise
* rfcomm_sock_destruct() will dead lock. */
rfcomm_dlc_unlock(d);
rfcomm_sock_kill(sk);
rfcomm_dlc_lock(d);
}
}
which is fine, since rfcomm_sock_kill() will call sk_free() which will call
rfcomm_sock_destruct() which takes the rfcomm_dlc_lock()... so far so good.
HOWEVER, this assumes that the rfcomm_sk_state_change() function always gets
called with the rfcomm_dlc_lock() taken. This is the case for all but one
case, and in that case where we don't have the lock, we do a double unlock
followed by an attempt to take the lock, which due to underflow isn't
going anywhere fast.
This patch fixes this by moving the stragling case inside the lock, like
the other usages of the same call are doing in this code.
This was found with the help of the www.kerneloops.org project, where this
deadlock was observed 51 times at this point in time:
http://www.kerneloops.org/search.php?search=rfcomm_sock_destruct
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
Conflicts:
drivers/net/s2io.c
|
|
Lockdep warning will be trigged while rfcomm connection closing.
The locks taken in rfcomm_dev_add:
rfcomm_dev_lock --> d->lock
In __rfcomm_dlc_close:
d->lock --> rfcomm_dev_lock (in rfcomm_dev_state_change)
There's two way to fix it, one is in rfcomm_dev_add we first locking
d->lock then the rfcomm_dev_lock
The other (in this patch), remove the locking of d->lock for
rfcomm_dev_state_change because just locking "d->state = BT_CLOSED;"
is enough.
[ 295.002046] =======================================================
[ 295.002046] [ INFO: possible circular locking dependency detected ]
[ 295.002046] 2.6.25-rc7 #1
[ 295.002046] -------------------------------------------------------
[ 295.002046] krfcommd/2705 is trying to acquire lock:
[ 295.002046] (rfcomm_dev_lock){-.--}, at: [<f89a090a>] rfcomm_dev_state_change+0x6a/0xd0 [rfcomm]
[ 295.002046]
[ 295.002046] but task is already holding lock:
[ 295.002046] (&d->lock){--..}, at: [<f899c533>] __rfcomm_dlc_close+0x43/0xd0 [rfcomm]
[ 295.002046]
[ 295.002046] which lock already depends on the new lock.
[ 295.002046]
[ 295.002046]
[ 295.002046] the existing dependency chain (in reverse order) is:
[ 295.002046]
[ 295.002046] -> #1 (&d->lock){--..}:
[ 295.002046] [<c0149b23>] check_prev_add+0xd3/0x200
[ 295.002046] [<c0149ce5>] check_prevs_add+0x95/0xe0
[ 295.002046] [<c0149f6f>] validate_chain+0x23f/0x320
[ 295.002046] [<c014b7b1>] __lock_acquire+0x1c1/0x760
[ 295.002046] [<c014c349>] lock_acquire+0x79/0xb0
[ 295.002046] [<c03d6b99>] _spin_lock+0x39/0x80
[ 295.002046] [<f89a01c0>] rfcomm_dev_add+0x240/0x360 [rfcomm]
[ 295.002046] [<f89a047e>] rfcomm_create_dev+0x6e/0xe0 [rfcomm]
[ 295.002046] [<f89a0823>] rfcomm_dev_ioctl+0x33/0x60 [rfcomm]
[ 295.002046] [<f899facc>] rfcomm_sock_ioctl+0x2c/0x50 [rfcomm]
[ 295.002046] [<c0363d38>] sock_ioctl+0x118/0x240
[ 295.002046] [<c0194196>] vfs_ioctl+0x76/0x90
[ 295.002046] [<c0194446>] do_vfs_ioctl+0x56/0x140
[ 295.002046] [<c0194569>] sys_ioctl+0x39/0x60
[ 295.002046] [<c0104faa>] syscall_call+0x7/0xb
[ 295.002046] [<ffffffff>] 0xffffffff
[ 295.002046]
[ 295.002046] -> #0 (rfcomm_dev_lock){-.--}:
[ 295.002046] [<c0149a84>] check_prev_add+0x34/0x200
[ 295.002046] [<c0149ce5>] check_prevs_add+0x95/0xe0
[ 295.002046] [<c0149f6f>] validate_chain+0x23f/0x320
[ 295.002046] [<c014b7b1>] __lock_acquire+0x1c1/0x760
[ 295.002046] [<c014c349>] lock_acquire+0x79/0xb0
[ 295.002046] [<c03d6639>] _read_lock+0x39/0x80
[ 295.002046] [<f89a090a>] rfcomm_dev_state_change+0x6a/0xd0 [rfcomm]
[ 295.002046] [<f899c548>] __rfcomm_dlc_close+0x58/0xd0 [rfcomm]
[ 295.002046] [<f899d44f>] rfcomm_recv_ua+0x6f/0x120 [rfcomm]
[ 295.002046] [<f899e061>] rfcomm_recv_frame+0x171/0x1e0 [rfcomm]
[ 295.002046] [<f899e357>] rfcomm_run+0xe7/0x550 [rfcomm]
[ 295.002046] [<c013c18c>] kthread+0x5c/0xa0
[ 295.002046] [<c0105c07>] kernel_thread_helper+0x7/0x10
[ 295.002046] [<ffffffff>] 0xffffffff
[ 295.002046]
[ 295.002046] other info that might help us debug this:
[ 295.002046]
[ 295.002046] 2 locks held by krfcommd/2705:
[ 295.002046] #0: (rfcomm_mutex){--..}, at: [<f899e2eb>] rfcomm_run+0x7b/0x550 [rfcomm]
[ 295.002046] #1: (&d->lock){--..}, at: [<f899c533>] __rfcomm_dlc_close+0x43/0xd0 [rfcomm]
[ 295.002046]
[ 295.002046] stack backtrace:
[ 295.002046] Pid: 2705, comm: krfcommd Not tainted 2.6.25-rc7 #1
[ 295.002046] [<c0128a38>] ? printk+0x18/0x20
[ 295.002046] [<c014927f>] print_circular_bug_tail+0x6f/0x80
[ 295.002046] [<c0149a84>] check_prev_add+0x34/0x200
[ 295.002046] [<c0149ce5>] check_prevs_add+0x95/0xe0
[ 295.002046] [<c0149f6f>] validate_chain+0x23f/0x320
[ 295.002046] [<c014b7b1>] __lock_acquire+0x1c1/0x760
[ 295.002046] [<c014c349>] lock_acquire+0x79/0xb0
[ 295.002046] [<f89a090a>] ? rfcomm_dev_state_change+0x6a/0xd0 [rfcomm]
[ 295.002046] [<c03d6639>] _read_lock+0x39/0x80
[ 295.002046] [<f89a090a>] ? rfcomm_dev_state_change+0x6a/0xd0 [rfcomm]
[ 295.002046] [<f89a090a>] rfcomm_dev_state_change+0x6a/0xd0 [rfcomm]
[ 295.002046] [<f899c548>] __rfcomm_dlc_close+0x58/0xd0 [rfcomm]
[ 295.002046] [<f899d44f>] rfcomm_recv_ua+0x6f/0x120 [rfcomm]
[ 295.002046] [<f899e061>] rfcomm_recv_frame+0x171/0x1e0 [rfcomm]
[ 295.002046] [<c014abd9>] ? trace_hardirqs_on+0xb9/0x130
[ 295.002046] [<c03d6e89>] ? _spin_unlock_irqrestore+0x39/0x70
[ 295.002046] [<f899e357>] rfcomm_run+0xe7/0x550 [rfcomm]
[ 295.002046] [<c03d4559>] ? __sched_text_start+0x229/0x4c0
[ 295.002046] [<c0120000>] ? cpu_avg_load_per_task+0x20/0x30
[ 295.002046] [<f899e270>] ? rfcomm_run+0x0/0x550 [rfcomm]
[ 295.002046] [<c013c18c>] kthread+0x5c/0xa0
[ 295.002046] [<c013c130>] ? kthread+0x0/0xa0
[ 295.002046] [<c0105c07>] kernel_thread_helper+0x7/0x10
[ 295.002046] =======================
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
'rfcomm connect' will trigger lockdep warnings which is caused by
locking diffrent kinds of bluetooth sockets at the same time.
So using sub-classes per AF_BLUETOOTH sub-type for lockdep.
Thanks for the hints from dave jones.
---
> From: Dave Jones <davej@codemonkey.org.uk>
> Date: Thu, 27 Mar 2008 12:21:56 -0400
>
> > Mar 27 08:10:57 localhost kernel: Pid: 3611, comm: obex-data-serve Not tainted 2.6.25-0.121.rc5.git4.fc9 #1
> > Mar 27 08:10:57 localhost kernel: [__lock_acquire+2287/3089] __lock_acquire+0x8ef/0xc11
> > Mar 27 08:10:57 localhost kernel: [sched_clock+8/11] ? sched_clock+0x8/0xb
> > Mar 27 08:10:57 localhost kernel: [lock_acquire+106/144] lock_acquire+0x6a/0x90
> > Mar 27 08:10:57 localhost kernel: [<f8bd9321>] ? l2cap_sock_bind+0x29/0x108 [l2cap]
> > Mar 27 08:10:57 localhost kernel: [lock_sock_nested+182/198] lock_sock_nested+0xb6/0xc6
> > Mar 27 08:10:57 localhost kernel: [<f8bd9321>] ? l2cap_sock_bind+0x29/0x108 [l2cap]
> > Mar 27 08:10:57 localhost kernel: [security_socket_post_create+22/27] ? security_socket_post_create+0x16/0x1b
> > Mar 27 08:10:57 localhost kernel: [__sock_create+388/472] ? __sock_create+0x184/0x1d8
> > Mar 27 08:10:57 localhost kernel: [<f8bd9321>] l2cap_sock_bind+0x29/0x108 [l2cap]
> > Mar 27 08:10:57 localhost kernel: [kernel_bind+10/13] kernel_bind+0xa/0xd
> > Mar 27 08:10:57 localhost kernel: [<f8dad3d7>] rfcomm_dlc_open+0xc8/0x294 [rfcomm]
> > Mar 27 08:10:57 localhost kernel: [lock_sock_nested+187/198] ? lock_sock_nested+0xbb/0xc6
> > Mar 27 08:10:57 localhost kernel: [<f8dae18c>] rfcomm_sock_connect+0x8b/0xc2 [rfcomm]
> > Mar 27 08:10:57 localhost kernel: [sys_connect+96/125] sys_connect+0x60/0x7d
> > Mar 27 08:10:57 localhost kernel: [__lock_acquire+1370/3089] ? __lock_acquire+0x55a/0xc11
> > Mar 27 08:10:57 localhost kernel: [sys_socketcall+140/392] sys_socketcall+0x8c/0x188
> > Mar 27 08:10:57 localhost kernel: [syscall_call+7/11] syscall_call+0x7/0xb
---
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The older RW_LOCK_UNLOCKED macros defeat lockdep state tracing so
replace them with the newer __RW_LOCK_UNLOCKED macros.
Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Introduce per-sock inlines: sock_net(), sock_net_set()
and per-inet_timewait_sock inlines: twsk_net(), twsk_net_set().
Without CONFIG_NET_NS, no namespace other than &init_net exists.
Let's explicitly define them to help compiler optimizations.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
|
|
bnep_sock_cleanup() always returns 0 and its return value isn't used
anywhere in the code.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
hci_sock_cleanup() always returns 0 and its return value isn't used
anywhere in the code.
Compile-tested with 'make allyesconfig && make net/bluetooth/bluetooth.ko'
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
|
|
Alon Bar-Lev reports:
Feb 16 23:41:33 alon1 usb 3-1: configuration #1 chosen from 1 choice
Feb 16 23:41:33 alon1 BUG: unable to handle kernel NULL pointer
dereference at virtual address 00000008
Feb 16 23:41:33 alon1 printing eip: c01b2db6 *pde = 00000000
Feb 16 23:41:33 alon1 Oops: 0000 [#1] PREEMPT
Feb 16 23:41:33 alon1 Modules linked in: ppp_deflate zlib_deflate
zlib_inflate bsd_comp ppp_async rfcomm l2cap hci_usb vmnet(P)
vmmon(P) tun radeon drm autofs4 ipv6 aes_generic crypto_algapi
ieee80211_crypt_ccmp nf_nat_irc nf_nat_ftp nf_conntrack_irc
nf_conntrack_ftp ipt_MASQUERADE iptable_nat nf_nat ipt_REJECT
xt_tcpudp ipt_LOG xt_limit xt_state nf_conntrack_ipv4 nf_conntrack
iptable_filter ip_tables x_tables snd_pcm_oss snd_mixer_oss
snd_seq_dummy snd_seq_oss snd_seq_midi_event snd_seq snd_seq_device
bluetooth ppp_generic slhc ioatdma dca cfq_iosched cpufreq_powersave
cpufreq_ondemand cpufreq_conservative acpi_cpufreq freq_table uinput
fan af_packet nls_cp1255 nls_iso8859_1 nls_utf8 nls_base pcmcia
snd_intel8x0 snd_ac97_codec ac97_bus snd_pcm nsc_ircc snd_timer
ipw2200 thinkpad_acpi irda snd ehci_hcd yenta_socket uhci_hcd
psmouse ieee80211 soundcore intel_agp hwmon rsrc_nonstatic pcspkr
e1000 crc_ccitt snd_page_alloc i2c_i801 ieee80211_crypt pcmcia_core
agpgart thermal bat!
tery nvram rtc sr_mod ac sg firmware_class button processor cdrom
unix usbcore evdev ext3 jbd ext2 mbcache loop ata_piix libata sd_mod
scsi_mod
Feb 16 23:41:33 alon1
Feb 16 23:41:33 alon1 Pid: 4, comm: events/0 Tainted: P
(2.6.24-gentoo-r2 #1)
Feb 16 23:41:33 alon1 EIP: 0060:[<c01b2db6>] EFLAGS: 00010282 CPU: 0
Feb 16 23:41:33 alon1 EIP is at sysfs_get_dentry+0x26/0x80
Feb 16 23:41:33 alon1 EAX: 00000000 EBX: 00000000 ECX: 00000000 EDX:
f48a2210
Feb 16 23:41:33 alon1 ESI: f72eb900 EDI: f4803ae0 EBP: f4803ae0 ESP:
f7c49efc
Feb 16 23:41:33 alon1 hcid[7004]: HCI dev 0 registered
Feb 16 23:41:33 alon1 DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068
Feb 16 23:41:33 alon1 Process events/0 (pid: 4, ti=f7c48000
task=f7c3efc0 task.ti=f7c48000)
Feb 16 23:41:33 alon1 Stack: f7cb6140 f4822668 f7e71e10 c01b304d
ffffffff ffffffff fffffffe c030ba9c
Feb 16 23:41:33 alon1 f7cb6140 f4822668 f6da6720 f7cb6140 f4822668
f6da6720 c030ba8e c01ce20b
Feb 16 23:41:33 alon1 f6e9dd00 c030ba8e f6da6720 f6e9dd00 f6e9dd00
00000000 f4822600 00000000
Feb 16 23:41:33 alon1 Call Trace:
Feb 16 23:41:33 alon1 [<c01b304d>] sysfs_move_dir+0x3d/0x1f0
Feb 16 23:41:33 alon1 [<c01ce20b>] kobject_move+0x9b/0x120
Feb 16 23:41:33 alon1 [<c0241711>] device_move+0x51/0x110
Feb 16 23:41:33 alon1 [<f9aaed80>] del_conn+0x0/0x70 [bluetooth]
Feb 16 23:41:33 alon1 [<f9aaed99>] del_conn+0x19/0x70 [bluetooth]
Feb 16 23:41:33 alon1 [<c012c1a1>] run_workqueue+0x81/0x140
Feb 16 23:41:33 alon1 [<c02c0c88>] schedule+0x168/0x2e0
Feb 16 23:41:33 alon1 [<c012fc70>] autoremove_wake_function+0x0/0x50
Feb 16 23:41:33 alon1 [<c012c9cb>] worker_thread+0x9b/0xf0
Feb 16 23:41:33 alon1 [<c012fc70>] autoremove_wake_function+0x0/0x50
Feb 16 23:41:33 alon1 [<c012c930>] worker_thread+0x0/0xf0
Feb 16 23:41:33 alon1 [<c012f962>] kthread+0x42/0x70
Feb 16 23:41:33 alon1 [<c012f920>] kthread+0x0/0x70
Feb 16 23:41:33 alon1 [<c0104c2f>] kernel_thread_helper+0x7/0x18
Feb 16 23:41:33 alon1 =======================
Feb 16 23:41:33 alon1 Code: 26 00 00 00 00 57 89 c7 a1 50 1b 3a c0
56 53 8b 70 38 85 f6 74 08 8b 0e 85 c9 74 58 ff 06 8b 56 50 39 fa 74
47 89 fb eb 02 89 c3 <8b> 43 08 39 c2 75 f7 8b 46 08 83 c0 68 e8 98
e7 10 00 8b 43 10
Feb 16 23:41:33 alon1 EIP: [<c01b2db6>] sysfs_get_dentry+0x26/0x80
SS:ESP 0068:f7c49efc
Feb 16 23:41:33 alon1 ---[ end trace aae864e9592acc1d ]---
Defer hci_unregister_sysfs because hci device could be destructed
while hci conn devices still there.
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Tested-by: Stefan Seyfried <seife@suse.de>
Acked-by: Alon Bar-Lev <alon.barlev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
|
|
When the l2cap info_timer is active the info_state will be set to
L2CAP_INFO_FEAT_MASK_REQ_SENT, and it will be unset after the timer is
deleted or timeout triggered.
Here in l2cap_conn_del only call del_timer_sync when the info_state is
set to L2CAP_INFO_FEAT_MASK_REQ_SENT.
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Delete a possibly armed timer before kfree'ing the connection object.
Solves: http://lkml.org/lkml/2008/2/15/514
Reported-by:Quel Qun <kelk1@comcast.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6: (60 commits)
[NIU]: Bump driver version and release date.
[NIU]: Fix BMAC alternate MAC address indexing.
net: fix kernel-doc warnings in header files
[IPV6]: Use BUG_ON instead of if + BUG in fib6_del_route.
[IPV6]: dst_entry leak in ip4ip6_err. (resend)
bluetooth: do not move child device other than rfcomm
bluetooth: put hci dev after del conn
[NET]: Elminate spurious print_mac() calls.
[BLUETOOTH] hci_sysfs.c: Kill build warning.
[NET]: Remove MAC_FMT
net/8021q/vlan_dev.c: Use print_mac.
[XFRM]: Fix ordering issue in xfrm_dst_hash_transfer().
[BLUETOOTH] net/bluetooth/hci_core.c: Use time_* macros
[IPV6]: Fix hardcoded removing of old module code
[NETLABEL]: Move some initialization code into __init section.
[NETLABEL]: Shrink the genl-ops registration code.
[AX25] ax25_out: check skb for NULL in ax25_kick()
[TCP]: Fix tcp_v4_send_synack() comment
[IPV4]: fix alignment of IP-Config output
Documentation: fix tcp.txt
...
|
|
hci conn child devices other than rfcomm tty should not be moved here.
This is my lost, thanks for Barnaby's reporting and testing.
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Move hci_dev_put to del_conn to avoid hci dev going away before hci conn.
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
net/bluetooth/hci_sysfs.c: In function ‘del_conn’:
net/bluetooth/hci_sysfs.c:339: warning: suggest parentheses around assignment used as truth value
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The functions time_before, time_before_eq, time_after, and
time_after_eq are more robust for comparing jiffies against other
values.
So following patch implements usage of the time_after() macro, defined
at linux/jiffies.h, which deals with wrapping correctly
Signed-off-by: S.Çağlar Onur <caglar@pardus.org.tr>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
fastcall always expands to empty, remove it.
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
rfcomm dev could be deleted in tty_hangup, so we must not call
rfcomm_dev_del again to prevent from destroying rfcomm dev before tty
close.
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|