summaryrefslogtreecommitdiff
path: root/mm/memcontrol.c
AgeCommit message (Collapse)AuthorFilesLines
2015-04-16mm: remove rest of ACCESS_ONCE() usagesJason Low1-9/+9
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/ tree since it doesn't work reliably on non-scalar types. This patch removes the rest of the usages of ACCESS_ONCE, and use the new READ_ONCE API for the read accesses. This makes things cleaner, instead of using separate/multiple sets of APIs. Signed-off-by: Jason Low <jason.low2@hp.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Davidlohr Bueso <dave@stgolabs.net> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16memcg: remove obsolete commentVladimir Davydov1-5/+0
Low and high watermarks, as they defined in the TODO to the mem_cgroup struct, have already been implemented by Johannes, so remove the stale comment. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16memcg: zap mem_cgroup_lookup()Vladimir Davydov1-16/+8
mem_cgroup_lookup() is a wrapper around mem_cgroup_from_id(), which checks that id != 0 before issuing the function call. Today, there is no point in this additional check apart from optimization, because there is no css with id <= 0, so that css_from_id, called by mem_cgroup_from_id, will return NULL for any id <= 0. Since mem_cgroup_from_id is only called from mem_cgroup_lookup, let us zap mem_cgroup_lookup, substituting calls to it with mem_cgroup_from_id and moving the check if id > 0 to css_from_id. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15memcg: print cgroup information when system panics due to panic_on_oomBalasubramani Vivekanandan1-7/+9
If kernel panics due to oom, caused by a cgroup reaching its limit, when 'compulsory panic_on_oom' is enabled, then we will only see that the OOM happened because of "compulsory panic_on_oom is enabled" but this doesn't tell the difference between mempolicy and memcg. And dumping system wide information is plain wrong and more confusing. This patch provides the information of the cgroup whose limit triggerred panic Signed-off-by: Balasubramani Vivekanandan <balasubramani_vivekanandan@mentor.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15mm: memcontrol: let mem_cgroup_move_account() have effect only if MMU enabledChen Gang1-86/+86
When !MMU, it will report warning. The related warning with allmodconfig under c6x: CC mm/memcontrol.o mm/memcontrol.c:2802:12: warning: 'mem_cgroup_move_account' defined but not used [-Wunused-function] static int mem_cgroup_move_account(struct page *page, ^ Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15mm: memcontrol: update copyright noticeJohannes Weiner1-0/+6
Add myself to the list of copyright holders. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-13memcg: disable hierarchy support if bound to the legacy cgroup hierarchyVladimir Davydov1-1/+3
If the memory cgroup controller is initially mounted in the scope of the default cgroup hierarchy and then remounted to a legacy hierarchy, it will still have hierarchy support enabled, which is incorrect. We should disable hierarchy support if bound to the legacy cgroup hierarchy. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-28mm: memcontrol: use "max" instead of "infinity" in control knobsJohannes Weiner1-6/+6
The memcg control knobs indicate the highest possible value using the symbolic name "infinity", which is long and awkward to type. Switch to the string "max", which is just as descriptive but shorter and sweeter. This changes a user interface, so do it before the release and before the development flag is dropped from the default hierarchy. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-28memcg: fix low limit calculationMichal Hocko1-2/+2
A memcg is considered low limited even when the current usage is equal to the low limit. This leads to interesting side effects e.g. groups/hierarchies with no memory accounted are considered protected and so the reclaim will emit MEMCG_LOW event when encountering them. Another and much bigger issue was reported by Joonsoo Kim. He has hit a NULL ptr dereference with the legacy cgroup API which even doesn't have low limit exposed. The limit is 0 by default but the initial check fails for memcg with 0 consumption and parent_mem_cgroup() would return NULL if use_hierarchy is 0 and so page_counter_read would try to dereference NULL. I suppose that the current implementation is just an overlook because the documentation in Documentation/cgroups/unified-hierarchy.txt says: "The memory.low boundary on the other hand is a top-down allocated reserve. A cgroup enjoys reclaim protection when it and all its ancestors are below their low boundaries" Fix the usage and the low limit comparision in mem_cgroup_low accordingly. Fixes: 241994ed8649 (mm: memcontrol: default hierarchy interface for memory) Reported-by: Joonsoo Kim <js1304@gmail.com> Signed-off-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13memcg: cleanup static keys decrementVladimir Davydov1-33/+5
Move memcg_socket_limit_enabled decrement to tcp_destroy_cgroup (called from memcg_destroy_kmem -> mem_cgroup_sockets_destroy) and zap a bunch of wrapper functions. Although this patch moves static keys decrement from __mem_cgroup_free to mem_cgroup_css_free, it does not introduce any functional changes, because the keys are incremented on setting the limit (tcp or kmem), which can only happen after successful mem_cgroup_css_online. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Glauber Costa <glommer@parallels.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: David S. Miller <davem@davemloft.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13memcg: reparent list_lrus and free kmemcg_id on css offlineVladimir Davydov1-5/+34
Now, the only reason to keep kmemcg_id till css free is list_lru, which uses it to distribute elements between per-memcg lists. However, it can be easily sorted out - we only need to change kmemcg_id of an offline cgroup to its parent's id, making further list_lru_add()'s add elements to the parent's list, and then move all elements from the offline cgroup's list to the one of its parent. It will work, because a racing list_lru_del() does not need to know the list it is deleting the element from. It can decrement the wrong nr_items counter though, but the ongoing reparenting will fix it. After list_lru reparenting is done we are free to release kmemcg_id saving a valuable slot in a per-memcg array for new cgroups. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13memcg: free memcg_caches slot on css offlineVladimir Davydov1-6/+32
We need to look up a kmem_cache in ->memcg_params.memcg_caches arrays only on allocations, so there is no need to have the array entries set until css free - we can clear them on css offline. This will allow us to reuse array entries more efficiently and avoid costly array relocations. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Chinner <david@fromorbit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13slab: embed memcg_cache_params to kmem_cacheVladimir Davydov1-6/+5
Currently, kmem_cache stores a pointer to struct memcg_cache_params instead of embedding it. The rationale is to save memory when kmem accounting is disabled. However, the memcg_cache_params has shrivelled drastically since it was first introduced: * Initially: struct memcg_cache_params { bool is_root_cache; union { struct kmem_cache *memcg_caches[0]; struct { struct mem_cgroup *memcg; struct list_head list; struct kmem_cache *root_cache; bool dead; atomic_t nr_pages; struct work_struct destroy; }; }; }; * Now: struct memcg_cache_params { bool is_root_cache; union { struct { struct rcu_head rcu_head; struct kmem_cache *memcg_caches[0]; }; struct { struct mem_cgroup *memcg; struct kmem_cache *root_cache; }; }; }; So the memory saving does not seem to be a clear win anymore. OTOH, keeping a pointer to memcg_cache_params struct instead of embedding it results in touching one more cache line on kmem alloc/free hot paths. Besides, it makes linking kmem caches in a list chained by a field of struct memcg_cache_params really painful due to a level of indirection, while I want to make them linked in the following patch. That said, let us embed it. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13list_lru: introduce per-memcg listsVladimir Davydov1-0/+20
There are several FS shrinkers, including super_block::s_shrink, that keep reclaimable objects in the list_lru structure. Hence to turn them to memcg-aware shrinkers, it is enough to make list_lru per-memcg. This patch does the trick. It adds an array of lru lists to the list_lru_node structure (per-node part of the list_lru), one for each kmem-active memcg, and dispatches every item addition or removal to the list corresponding to the memcg which the item is accounted to. So now the list_lru structure is not just per node, but per node and per memcg. Not all list_lrus need this feature, so this patch also adds a new method, list_lru_init_memcg, which initializes a list_lru as memcg aware. Otherwise (i.e. if initialized with old list_lru_init), the list_lru won't have per memcg lists. Just like per memcg caches arrays, the arrays of per-memcg lists are indexed by memcg_cache_id, so we must grow them whenever memcg_nr_cache_ids is increased. So we introduce a callback, memcg_update_all_list_lrus, invoked by memcg_alloc_cache_id if the id space is full. The locking is implemented in a manner similar to lruvecs, i.e. we have one lock per node that protects all lists (both global and per cgroup) on the node. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13memcg: add rwsem to synchronize against memcg_caches arrays relocationVladimir Davydov1-10/+19
We need a stable value of memcg_nr_cache_ids in kmem_cache_create() (memcg_alloc_cache_params() wants it for root caches), where we only hold the slab_mutex and no memcg-related locks. As a result, we have to update memcg_nr_cache_ids under the slab_mutex, which we can only take on the slab's side (see memcg_update_array_size). This looks awkward and will become even worse when per-memcg list_lru is introduced, which also wants stable access to memcg_nr_cache_ids. To get rid of this dependency between the memcg_nr_cache_ids and the slab_mutex, this patch introduces a special rwsem. The rwsem is held for writing during memcg_caches arrays relocation and memcg_nr_cache_ids updates. Therefore one can take it for reading to get a stable access to memcg_caches arrays and/or memcg_nr_cache_ids. Currently the semaphore is taken for reading only from kmem_cache_create, right before taking the slab_mutex, so right now there's no much point in using rwsem instead of mutex. However, once list_lru is made per-memcg it will allow list_lru initializations to proceed concurrently. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13memcg: rename some cache id related variablesVladimir Davydov1-10/+9
memcg_limited_groups_array_size, which defines the size of memcg_caches arrays, sounds rather cumbersome. Also it doesn't point anyhow that it's related to kmem/caches stuff. So let's rename it to memcg_nr_cache_ids. It's concise and points us directly to memcg_cache_id. Also, rename kmem_limited_groups to memcg_cache_ida. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13vmscan: per memory cgroup slab shrinkersVladimir Davydov1-1/+1
This patch adds SHRINKER_MEMCG_AWARE flag. If a shrinker has this flag set, it will be called per memory cgroup. The memory cgroup to scan objects from is passed in shrink_control->memcg. If the memory cgroup is NULL, a memcg aware shrinker is supposed to scan objects from the global list. Unaware shrinkers are only called on global pressure with memcg=NULL. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12memcg: cleanup preparation for page table walkNaoya Horiguchi1-33/+16
pagewalk.c can handle vma in itself, so we don't have to pass vma via walk->private. And both of mem_cgroup_count_precharge() and mem_cgroup_move_charge() do for each vma loop themselves, but now it's done in pagewalk.c, so let's clean up them. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm: memcontrol: consolidate swap controller codeJohannes Weiner1-139/+125
The swap controller code is scattered all over the file. Gather all the code that isn't directly needed by the memory controller at the end of the file in its own CONFIG_MEMCG_SWAP section. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm: memcontrol: consolidate memory controller initializationJohannes Weiner1-35/+25
The initialization code for the per-cpu charge stock and the soft limit tree is compact enough to inline it into mem_cgroup_init(). Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm: memcontrol: simplify soft limit tree init codeJohannes Weiner1-9/+8
- No need to test the node for N_MEMORY. node_online() is enough for node fallback to work in slab, use NUMA_NO_NODE for everything else. - Remove the BUG_ON() for allocation failure. A NULL pointer crash is just as descriptive, and the absent return value check is obvious. - Move local variables to the inner-most blocks. - Point to the tree structure after its initialized, not before, it's just more logical that way. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12oom, PM: make OOM detection in the freezer path racelessMichal Hocko1-1/+1
Commit 5695be142e20 ("OOM, PM: OOM killed task shouldn't escape PM suspend") has left a race window when OOM killer manages to note_oom_kill after freeze_processes checks the counter. The race window is quite small and really unlikely and partial solution deemed sufficient at the time of submission. Tejun wasn't happy about this partial solution though and insisted on a full solution. That requires the full OOM and freezer's task freezing exclusion, though. This is done by this patch which introduces oom_sem RW lock and turns oom_killer_disable() into a full OOM barrier. oom_killer_disabled check is moved from the allocation path to the OOM level and we take oom_sem for reading for both the check and the whole OOM invocation. oom_killer_disable() takes oom_sem for writing so it waits for all currently running OOM killer invocations. Then it disable all the further OOMs by setting oom_killer_disabled and checks for any oom victims. Victims are counted via mark_tsk_oom_victim resp. unmark_oom_victim. The last victim wakes up all waiters enqueued by oom_killer_disable(). Therefore this function acts as the full OOM barrier. The page fault path is covered now as well although it was assumed to be safe before. As per Tejun, "We used to have freezing points deep in file system code which may be reacheable from page fault." so it would be better and more robust to not rely on freezing points here. Same applies to the memcg OOM killer. out_of_memory tells the caller whether the OOM was allowed to trigger and the callers are supposed to handle the situation. The page allocation path simply fails the allocation same as before. The page fault path will retry the fault (more on that later) and Sysrq OOM trigger will simply complain to the log. Normally there wouldn't be any unfrozen user tasks after try_to_freeze_tasks so the function will not block. But if there was an OOM killer racing with try_to_freeze_tasks and the OOM victim didn't finish yet then we have to wait for it. This should complete in a finite time, though, because - the victim cannot loop in the page fault handler (it would die on the way out from the exception) - it cannot loop in the page allocator because all the further allocation would fail and __GFP_NOFAIL allocations are not acceptable at this stage - it shouldn't be blocked on any locks held by frozen tasks (try_to_freeze expects lockless context) and kernel threads and work queues are not frozen yet Signed-off-by: Michal Hocko <mhocko@suse.cz> Suggested-by: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12oom: add helpers for setting and clearing TIF_MEMDIEMichal Hocko1-1/+1
This patchset addresses a race which was described in the changelog for 5695be142e20 ("OOM, PM: OOM killed task shouldn't escape PM suspend"): : PM freezer relies on having all tasks frozen by the time devices are : getting frozen so that no task will touch them while they are getting : frozen. But OOM killer is allowed to kill an already frozen task in order : to handle OOM situtation. In order to protect from late wake ups OOM : killer is disabled after all tasks are frozen. This, however, still keeps : a window open when a killed task didn't manage to die by the time : freeze_processes finishes. The original patch hasn't closed the race window completely because that would require a more complex solution as it can be seen by this patchset. The primary motivation was to close the race condition between OOM killer and PM freezer _completely_. As Tejun pointed out, even though the race condition is unlikely the harder it would be to debug weird bugs deep in the PM freezer when the debugging options are reduced considerably. I can only speculate what might happen when a task is still runnable unexpectedly. On a plus side and as a side effect the oom enable/disable has a better (full barrier) semantic without polluting hot paths. I have tested the series in KVM with 100M RAM: - many small tasks (20M anon mmap) which are triggering OOM continually - s2ram which resumes automatically is triggered in a loop echo processors > /sys/power/pm_test while true do echo mem > /sys/power/state sleep 1s done - simple module which allocates and frees 20M in 8K chunks. If it sees freezing(current) then it tries another round of allocation before calling try_to_freeze - debugging messages of PM stages and OOM killer enable/disable/fail added and unmark_oom_victim is delayed by 1s after it clears TIF_MEMDIE and before it wakes up waiters. - rebased on top of the current mmotm which means some necessary updates in mm/oom_kill.c. mark_tsk_oom_victim is now called under task_lock but I think this should be OK because __thaw_task shouldn't interfere with any locking down wake_up_process. Oleg? As expected there are no OOM killed tasks after oom is disabled and allocations requested by the kernel thread are failing after all the tasks are frozen and OOM disabled. I wasn't able to catch a race where oom_killer_disable would really have to wait but I kinda expected the race is really unlikely. [ 242.609330] Killed process 2992 (mem_eater) total-vm:24412kB, anon-rss:2164kB, file-rss:4kB [ 243.628071] Unmarking 2992 OOM victim. oom_victims: 1 [ 243.636072] (elapsed 2.837 seconds) done. [ 243.641985] Trying to disable OOM killer [ 243.643032] Waiting for concurent OOM victims [ 243.644342] OOM killer disabled [ 243.645447] Freezing remaining freezable tasks ... (elapsed 0.005 seconds) done. [ 243.652983] Suspending console(s) (use no_console_suspend to debug) [ 243.903299] kmem_eater: page allocation failure: order:1, mode:0x204010 [...] [ 243.992600] PM: suspend of devices complete after 336.667 msecs [ 243.993264] PM: late suspend of devices complete after 0.660 msecs [ 243.994713] PM: noirq suspend of devices complete after 1.446 msecs [ 243.994717] ACPI: Preparing to enter system sleep state S3 [ 243.994795] PM: Saving platform NVS memory [ 243.994796] Disabling non-boot CPUs ... The first 2 patches are simple cleanups for OOM. They should go in regardless the rest IMO. Patches 3 and 4 are trivial printk -> pr_info conversion and they should go in ditto. The main patch is the last one and I would appreciate acks from Tejun and Rafael. I think the OOM part should be OK (except for __thaw_task vs. task_lock where a look from Oleg would appreciated) but I am not so sure I haven't screwed anything in the freezer code. I have found several surprises there. This patch (of 5): This patch is just a preparatory and it doesn't introduce any functional change. Note: I am utterly unhappy about lowmemory killer abusing TIF_MEMDIE just to wait for the oom victim and to prevent from new killing. This is just a side effect of the flag. The primary meaning is to give the oom victim access to the memory reserves and that shouldn't be necessary here. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm: memcontrol: fold move_anon() and move_file()Johannes Weiner1-31/+18
Turn the move type enum into flags and give the flags field a shorter name. Once that is done, move_anon() and move_file() are simple enough to just fold them into the callsites. [akpm@linux-foundation.org: tweak MOVE_MASK definition, per Michal] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm: memcontrol: default hierarchy interface for memoryJohannes Weiner1-11/+218
Introduce the basic control files to account, partition, and limit memory using cgroups in default hierarchy mode. This interface versioning allows us to address fundamental design issues in the existing memory cgroup interface, further explained below. The old interface will be maintained indefinitely, but a clearer model and improved workload performance should encourage existing users to switch over to the new one eventually. The control files are thus: - memory.current shows the current consumption of the cgroup and its descendants, in bytes. - memory.low configures the lower end of the cgroup's expected memory consumption range. The kernel considers memory below that boundary to be a reserve - the minimum that the workload needs in order to make forward progress - and generally avoids reclaiming it, unless there is an imminent risk of entering an OOM situation. - memory.high configures the upper end of the cgroup's expected memory consumption range. A cgroup whose consumption grows beyond this threshold is forced into direct reclaim, to work off the excess and to throttle new allocations heavily, but is generally allowed to continue and the OOM killer is not invoked. - memory.max configures the hard maximum amount of memory that the cgroup is allowed to consume before the OOM killer is invoked. - memory.events shows event counters that indicate how often the cgroup was reclaimed while below memory.low, how often it was forced to reclaim excess beyond memory.high, how often it hit memory.max, and how often it entered OOM due to memory.max. This allows users to identify configuration problems when observing a degradation in workload performance. An overcommitted system will have an increased rate of low boundary breaches, whereas increased rates of high limit breaches, maximum hits, or even OOM situations will indicate internally overcommitted cgroups. For existing users of memory cgroups, the following deviations from the current interface are worth pointing out and explaining: - The original lower boundary, the soft limit, is defined as a limit that is per default unset. As a result, the set of cgroups that global reclaim prefers is opt-in, rather than opt-out. The costs for optimizing these mostly negative lookups are so high that the implementation, despite its enormous size, does not even provide the basic desirable behavior. First off, the soft limit has no hierarchical meaning. All configured groups are organized in a global rbtree and treated like equal peers, regardless where they are located in the hierarchy. This makes subtree delegation impossible. Second, the soft limit reclaim pass is so aggressive that it not just introduces high allocation latencies into the system, but also impacts system performance due to overreclaim, to the point where the feature becomes self-defeating. The memory.low boundary on the other hand is a top-down allocated reserve. A cgroup enjoys reclaim protection when it and all its ancestors are below their low boundaries, which makes delegation of subtrees possible. Secondly, new cgroups have no reserve per default and in the common case most cgroups are eligible for the preferred reclaim pass. This allows the new low boundary to be efficiently implemented with just a minor addition to the generic reclaim code, without the need for out-of-band data structures and reclaim passes. Because the generic reclaim code considers all cgroups except for the ones running low in the preferred first reclaim pass, overreclaim of individual groups is eliminated as well, resulting in much better overall workload performance. - The original high boundary, the hard limit, is defined as a strict limit that can not budge, even if the OOM killer has to be called. But this generally goes against the goal of making the most out of the available memory. The memory consumption of workloads varies during runtime, and that requires users to overcommit. But doing that with a strict upper limit requires either a fairly accurate prediction of the working set size or adding slack to the limit. Since working set size estimation is hard and error prone, and getting it wrong results in OOM kills, most users tend to err on the side of a looser limit and end up wasting precious resources. The memory.high boundary on the other hand can be set much more conservatively. When hit, it throttles allocations by forcing them into direct reclaim to work off the excess, but it never invokes the OOM killer. As a result, a high boundary that is chosen too aggressively will not terminate the processes, but instead it will lead to gradual performance degradation. The user can monitor this and make corrections until the minimal memory footprint that still gives acceptable performance is found. In extreme cases, with many concurrent allocations and a complete breakdown of reclaim progress within the group, the high boundary can be exceeded. But even then it's mostly better to satisfy the allocation from the slack available in other groups or the rest of the system than killing the group. Otherwise, memory.max is there to limit this type of spillover and ultimately contain buggy or even malicious applications. - The original control file names are unwieldy and inconsistent in many different ways. For example, the upper boundary hit count is exported in the memory.failcnt file, but an OOM event count has to be manually counted by listening to memory.oom_control events, and lower boundary / soft limit events have to be counted by first setting a threshold for that value and then counting those events. Also, usage and limit files encode their units in the filename. That makes the filenames very long, even though this is not information that a user needs to be reminded of every time they type out those names. To address these naming issues, as well as to signal clearly that the new interface carries a new configuration model, the naming conventions in it necessarily differ from the old interface. - The original limit files indicate the state of an unset limit with a very high number, and a configured limit can be unset by echoing -1 into those files. But that very high number is implementation and architecture dependent and not very descriptive. And while -1 can be understood as an underflow into the highest possible value, -2 or -10M etc. do not work, so it's not inconsistent. memory.low, memory.high, and memory.max will use the string "infinity" to indicate and set the highest possible value. [akpm@linux-foundation.org: use seq_puts() for basic strings] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm: page_counter: pull "-1" handling out of page_counter_memparse()Johannes Weiner1-2/+2
The unified hierarchy interface for memory cgroups will no longer use "-1" to mean maximum possible resource value. In preparation for this, make the string an argument and let the caller supply it. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12memcg: add BUILD_BUG_ON() for string tablesGreg Thelen1-0/+4
Use BUILD_BUG_ON() to compile assert that memcg string tables are in sync with corresponding enums. There aren't currently any issues with these tables. This is just defensive. Signed-off-by: Greg Thelen <gthelen@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12vmscan: force scan offline memory cgroupsVladimir Davydov1-0/+14
Since commit b2052564e66d ("mm: memcontrol: continue cache reclaim from offlined groups") pages charged to a memory cgroup are not reparented when the cgroup is removed. Instead, they are supposed to be reclaimed in a regular way, along with pages accounted to online memory cgroups. However, an lruvec of an offline memory cgroup will sooner or later get so small that it will be scanned only at low scan priorities (see get_scan_count()). Therefore, if there are enough reclaimable pages in big lruvecs, pages accounted to offline memory cgroups will never be scanned at all, wasting memory. Fix this by unconditionally forcing scanning dead lruvecs from kswapd. [akpm@linux-foundation.org: fix build] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm: memcontrol: track move_lock state internallyJohannes Weiner1-29/+39
The complexity of memcg page stat synchronization is currently leaking into the callsites, forcing them to keep track of the move_lock state and the IRQ flags. Simplify the API by tracking it in the memcg. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11memcg: zap memcg_slab_caches and memcg_slab_mutexVladimir Davydov1-141/+15
mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11memcg: zap memcg_name argument of memcg_create_kmem_cacheVladimir Davydov1-4/+1
Instead of passing the name of the memory cgroup which the cache is created for in the memcg_name_argument, let's obtain it immediately in memcg_create_kmem_cache. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11memcg: zap __memcg_{charge,uncharge}_slabVladimir Davydov1-18/+3
They are simple wrappers around memcg_{charge,uncharge}_kmem, so let's zap them and call these functions directly. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11mm: remove rest usage of VM_NONLINEAR and pte_file()Kirill A. Shutemov1-5/+2
One bit in ->vm_flags is unused now! Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-06memcg, shmem: fix shmem migration to use lrucareMichal Hocko1-1/+1
It has been reported that 965GM might trigger VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage) in mem_cgroup_migrate when shmem wants to replace a swap cache page because of shmem_should_replace_page (the page is allocated from an inappropriate zone). shmem_replace_page expects that the oldpage is not on LRU list and calls mem_cgroup_migrate without lrucare. This is obviously incorrect because swapcache pages might be on the LRU list (e.g. swapin readahead page). Fix this by enabling lrucare for the migration in shmem_replace_page. Also clarify that lrucare should be used even if one of the pages might be on LRU list. The BUG_ON will trigger only when CONFIG_DEBUG_VM is enabled but even without that the migration code might leave the old page on an inappropriate memcg' LRU which is not that critical because the page would get removed with its last reference but it is still confusing. Fixes: 0a31bc97c80c ("mm: memcontrol: rewrite uncharge API") Signed-off-by: Michal Hocko <mhocko@suse.cz> Reported-by: Chris Wilson <chris@chris-wilson.co.uk> Reported-by: Dave Airlie <airlied@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> [3.17+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-27memcg: remove extra newlines from memcg oom kill logGreg Thelen1-2/+2
Commit e61734c55c24 ("cgroup: remove cgroup->name") added two extra newlines to memcg oom kill log messages. This makes dmesg hard to read and parse. The issue affects 3.15+. Example: Task in /t <<< extra #1 killed as a result of limit of /t <<< extra #2 memory: usage 102400kB, limit 102400kB, failcnt 274712 Remove the extra newlines from memcg oom kill messages, so the messages look like: Task in /t killed as a result of limit of /t memory: usage 102400kB, limit 102400kB, failcnt 240649 Fixes: e61734c55c24 ("cgroup: remove cgroup->name") Signed-off-by: Greg Thelen <gthelen@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-09memcg: fix destination cgroup leak on task charges migrationVladimir Davydov1-12/+0
We are supposed to take one css reference per each memory page and per each swap entry accounted to a memory cgroup. However, during task charges migration we take a reference to the destination cgroup twice per each swap entry: first in mem_cgroup_do_precharge()->try_charge() and then in mem_cgroup_move_swap_account(), permanently leaking the destination cgroup. The hunk taking the second reference seems to be a leftover from the pre-00501b531c472 ("mm: memcontrol: rewrite charge API") era. Remove it to fix the leak. Fixes: e8ea14cc6ead (mm: memcontrol: take a css reference for each charged page) Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-09mm: memcontrol: switch soft limit default back to infinityJohannes Weiner1-1/+4
Commit 3e32cb2e0a12 ("mm: memcontrol: lockless page counters") accidentally switched the soft limit default from infinity to zero, which turns all memcgs with even a single page into soft limit excessors and engages soft limit reclaim on all of them during global memory pressure. This makes global reclaim generally more aggressive, but also inverts the meaning of existing soft limit configurations where unset soft limits are usually more generous than set ones. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13mm/memcontrol.c: remove unused mem_cgroup_lru_names_not_uptodate()Rickard Strandqvist1-5/+2
Remove unused mem_cgroup_lru_names_not_uptodate() and move BUILD_BUG_ON() to the beginning of memcg_stat_show(). This was partially found by using a static code analysis program called cppcheck. Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13memcg: fix possible use-after-free in memcg_kmem_get_cache()Vladimir Davydov1-35/+16
Suppose task @t that belongs to a memory cgroup @memcg is going to allocate an object from a kmem cache @c. The copy of @c corresponding to @memcg, @mc, is empty. Then if kmem_cache_alloc races with the memory cgroup destruction we can access the memory cgroup's copy of the cache after it was destroyed: CPU0 CPU1 ---- ---- [ current=@t @mc->memcg_params->nr_pages=0 ] kmem_cache_alloc(@c): call memcg_kmem_get_cache(@c); proceed to allocation from @mc: alloc a page for @mc: ... move @t from @memcg destroy @memcg: mem_cgroup_css_offline(@memcg): memcg_unregister_all_caches(@memcg): kmem_cache_destroy(@mc) add page to @mc We could fix this issue by taking a reference to a per-memcg cache, but that would require adding a per-cpu reference counter to per-memcg caches, which would look cumbersome. Instead, let's take a reference to a memory cgroup, which already has a per-cpu reference counter, in the beginning of kmem_cache_alloc to be dropped in the end, and move per memcg caches destruction from css offline to css free. As a side effect, per-memcg caches will be destroyed not one by one, but all at once when the last page accounted to the memory cgroup is freed. This doesn't sound as a high price for code readability though. Note, this patch does add some overhead to the kmem_cache_alloc hot path, but it is pretty negligible - it's just a function call plus a per cpu counter decrement, which is comparable to what we already have in memcg_kmem_get_cache. Besides, it's only relevant if there are memory cgroups with kmem accounting enabled. I don't think we can find a way to handle this race w/o it, because alloc_page called from kmem_cache_alloc may sleep so we can't flush all pending kmallocs w/o reference counting. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13mm/memcontrol.c: fix defined but not used compiler warningMichele Curti1-1/+2
test_mem_cgroup_node_reclaimable() is used only when MAX_NUMNODES > 1, so move it into the compiler if statement [akpm@linux-foundation.org: clean up layout] Signed-off-by: Michele Curti <michele.curti@gmail.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13oom: don't assume that a coredumping thread will exit soonOleg Nesterov1-1/+1
oom_kill.c assumes that PF_EXITING task should exit and free the memory soon. This is wrong in many ways and one important case is the coredump. A task can sleep in exit_mm() "forever" while the coredumping sub-thread can need more memory. Change the PF_EXITING checks to take SIGNAL_GROUP_COREDUMP into account, we add the new trivial helper for that. Note: this is only the first step, this patch doesn't try to solve other problems. The SIGNAL_GROUP_COREDUMP check is obviously racy, a task can participate in coredump after it was already observed in PF_EXITING state, so TIF_MEMDIE (which also blocks oom-killer) still can be wrongly set. fatal_signal_pending() can be true because of SIGNAL_GROUP_COREDUMP so out_of_memory() and mem_cgroup_out_of_memory() shouldn't blindly trust it. And even the name/usage of the new helper is confusing, an exiting thread can only free its ->mm if it is the only/last task in thread group. [akpm@linux-foundation.org: add comment] Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13mm/memcontrol.c: remove the unused arg in __memcg_kmem_get_cache()Zhang Zhen1-2/+1
The gfp was passed in but never used in this function. Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13memcg: turn memcg_kmem_skip_account into a bit fieldVladimir Davydov1-33/+2
It isn't supposed to stack, so turn it into a bit-field to save 4 bytes on the task_struct. Also, remove the memcg_stop/resume_kmem_account helpers - it is clearer to set/clear the flag inline. Regarding the overwhelming comment to the helpers, which is removed by this patch too, we already have a compact yet accurate explanation in memcg_schedule_cache_create, no need in yet another one. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13memcg: only check memcg_kmem_skip_account in __memcg_kmem_get_cacheVladimir Davydov1-28/+0
__memcg_kmem_get_cache can recurse if it calls kmalloc (which it does if the cgroup's kmem cache doesn't exist), because kmalloc may call __memcg_kmem_get_cache internally again. To avoid the recursion, we use the task_struct->memcg_kmem_skip_account flag. However, there's no need checking the flag in memcg_kmem_newpage_charge, because there's no way how this function could result in recursion, if called from memcg_kmem_get_cache. So let's remove the redundant code. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13memcg: zap kmem_account_flagsVladimir Davydov1-21/+10
The only such flag is KMEM_ACCOUNTED_ACTIVE, but it's set iff mem_cgroup->kmemcg_id is initialized, so we can check kmemcg_id instead of having a separate flags field. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13memcg: do not abuse memcg_kmem_skip_accountVladimir Davydov1-7/+0
task_struct->memcg_kmem_skip_account was initially introduced to avoid recursion during kmem cache creation: memcg_kmem_get_cache, which is called by kmem_cache_alloc to determine the per-memcg cache to account allocation to, may issue lazy cache creation if the needed cache doesn't exist, which means issuing yet another kmem_cache_alloc. We can't just pass a flag to the nested kmem_cache_alloc disabling kmem accounting, because there are hidden allocations, e.g. in INIT_WORK. So we introduced a flag on the task_struct, memcg_kmem_skip_account, making memcg_kmem_get_cache return immediately. By its nature, the flag may also be used to disable accounting for allocations shared among different cgroups, and currently it is used this way in memcg_activate_kmem. Using it like this looks like abusing it to me. If we want to disable accounting for some allocations (which we will definitely want one day), we should either add GFP_NO_MEMCG or GFP_MEMCG flag in order to blacklist/whitelist some allocations. For now, let's simply remove memcg_stop/resume_kmem_account from memcg_activate_kmem. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13memcg: don't check mm in __memcg_kmem_{get_cache,newpage_charge}Vladimir Davydov1-2/+2
We already assured the current task has mm in memcg_kmem_should_charge, no need to double check. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13memcg: __mem_cgroup_free: remove stale disarm_static_keys commentVladimir Davydov1-11/+0
cpuset code stopped using cgroup_lock in favor of cpuset_mutex long ago. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11Merge branch 'akpm' (patchbomb from Andrew)Linus Torvalds1-1201/+505
Merge first patchbomb from Andrew Morton: - a few minor cifs fixes - dma-debug upadtes - ocfs2 - slab - about half of MM - procfs - kernel/exit.c - panic.c tweaks - printk upates - lib/ updates - checkpatch updates - fs/binfmt updates - the drivers/rtc tree - nilfs - kmod fixes - more kernel/exit.c - various other misc tweaks and fixes * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits) exit: pidns: fix/update the comments in zap_pid_ns_processes() exit: pidns: alloc_pid() leaks pid_namespace if child_reaper is exiting exit: exit_notify: re-use "dead" list to autoreap current exit: reparent: call forget_original_parent() under tasklist_lock exit: reparent: avoid find_new_reaper() if no children exit: reparent: introduce find_alive_thread() exit: reparent: introduce find_child_reaper() exit: reparent: document the ->has_child_subreaper checks exit: reparent: s/while_each_thread/for_each_thread/ in find_new_reaper() exit: reparent: fix the cross-namespace PR_SET_CHILD_SUBREAPER reparenting exit: reparent: fix the dead-parent PR_SET_CHILD_SUBREAPER reparenting exit: proc: don't try to flush /proc/tgid/task/tgid exit: release_task: fix the comment about group leader accounting exit: wait: drop tasklist_lock before psig->c* accounting exit: wait: don't use zombie->real_parent exit: wait: cleanup the ptrace_reparented() checks usermodehelper: kill the kmod_thread_locker logic usermodehelper: don't use CLONE_VFORK for ____call_usermodehelper() fs/hfs/catalog.c: fix comparison bug in hfs_cat_keycmp nilfs2: fix the nilfs_iget() vs. nilfs_new_inode() races ...
2014-12-11mm: move page->mem_cgroup bad page handling into generic codeJohannes Weiner1-15/+0
Now that the external page_cgroup data structure and its lookup is gone, let the generic bad_page() check for page->mem_cgroup sanity. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: David S. Miller <davem@davemloft.net> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>