summaryrefslogtreecommitdiff
path: root/kernel/time/timer.c
AgeCommit message (Collapse)AuthorFilesLines
2016-07-07timers: Make 'pinned' a timer propertyThomas Gleixner1-5/+5
We want to move the timer migration logic from a 'push' to a 'pull' model. Under the current 'push' model pinned timers are handled via a runtime API variant: mod_timer_pinned(). The 'pull' model requires us to store the pinned attribute of a timer in the timer_list structure itself, as a new TIMER_PINNED bit in timer->flags. This flag must be set at initialization time and the timer APIs recognize the flag. This patch: - Implements the new flag and associated new-style initialization methods - makes mod_timer() recognize new-style pinned timers, - and adds some migration helper facility to allow step by step conversion of old-style to new-style pinned timers. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Chris Mason <clm@fb.com> Cc: Eric Dumazet <edumazet@google.com> Cc: George Spelvin <linux@sciencehorizons.net> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: rt@linutronix.de Link: http://lkml.kernel.org/r/20160704094341.049338558@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-10timers: Clarify usleep_range() function commentBjorn Helgaas1-1/+7
Update the usleep_range() function comment to make it clear that it can only be used in non-atomic context. Previously we claimed usleep_range() was a drop-in replacement for udelay() where wakeup is flexible. But that's only true in non-atomic contexts, where it's possible to sleep instead of delay. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/20160531212302.28502.44995.stgit@bhelgaas-glaptop2.roam.corp.google.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-20debugobjects: insulate non-fixup logic related to static obj from fixup ↵Du, Changbin1-29/+14
callbacks When activating a static object we need make sure that the object is tracked in the object tracker. If it is a non-static object then the activation is illegal. In previous implementation, each subsystem need take care of this in their fixup callbacks. Actually we can put it into debugobjects core. Thus we can save duplicated code, and have *pure* fixup callbacks. To achieve this, a new callback "is_static_object" is introduced to let the type specific code decide whether a object is static or not. If yes, we take it into object tracker, otherwise give warning and invoke fixup callback. This change has paassed debugobjects selftest, and I also do some test with all debugobjects supports enabled. At last, I have a concern about the fixups that can it change the object which is in incorrect state on fixup? Because the 'addr' may not point to any valid object if a non-static object is not tracked. Then Change such object can overwrite someone's memory and cause unexpected behaviour. For example, the timer_fixup_activate bind timer to function stub_timer. Link: http://lkml.kernel.org/r/1462576157-14539-1-git-send-email-changbin.du@intel.com [changbin.du@intel.com: improve code comments where invoke the new is_static_object callback] Link: http://lkml.kernel.org/r/1462777431-8171-1-git-send-email-changbin.du@intel.com Signed-off-by: Du, Changbin <changbin.du@intel.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Triplett <josh@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tejun Heo <tj@kernel.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20timer: update debugobjects fixup callbacks return typeDu, Changbin1-15/+15
Update the return type to use bool instead of int, corresponding to cheange (debugobjects: make fixup functions return bool instead of int). Signed-off-by: Du, Changbin <changbin.du@intel.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Triplett <josh@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tejun Heo <tj@kernel.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-26sched: add schedule_timeout_idle()Andrew Morton1-0/+11
This will be needed in the patch "mm, oom: introduce oom reaper". Acked-by: Michal Hocko <mhocko@suse.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18timer: convert timer_slack_ns from unsigned long to u64John Stultz1-2/+2
This patchset introduces a /proc/<pid>/timerslack_ns interface which would allow controlling processes to be able to set the timerslack value on other processes in order to save power by avoiding wakeups (Something Android currently does via out-of-tree patches). The first patch tries to fix the internal timer_slack_ns usage which was defined as a long, which limits the slack range to ~4 seconds on 32bit systems. It converts it to a u64, which provides the same basically unlimited slack (500 years) on both 32bit and 64bit machines. The second patch introduces the /proc/<pid>/timerslack_ns interface which allows the full 64bit slack range for a task to be read or set on both 32bit and 64bit machines. With these two patches, on a 32bit machine, after setting the slack on bash to 10 seconds: $ time sleep 1 real 0m10.747s user 0m0.001s sys 0m0.005s The first patch is a little ugly, since I had to chase the slack delta arguments through a number of functions converting them to u64s. Let me know if it makes sense to break that up more or not. Other than that things are fairly straightforward. This patch (of 2): The timer_slack_ns value in the task struct is currently a unsigned long. This means that on 32bit applications, the maximum slack is just over 4 seconds. However, on 64bit machines, its much much larger (~500 years). This disparity could make application development a little (as well as the default_slack) to a u64. This means both 32bit and 64bit systems have the same effective internal slack range. Now the existing ABI via PR_GET_TIMERSLACK and PR_SET_TIMERSLACK specify the interface as a unsigned long, so we preserve that limitation on 32bit systems, where SET_TIMERSLACK can only set the slack to a unsigned long value, and GET_TIMERSLACK will return ULONG_MAX if the slack is actually larger then what can be stored by an unsigned long. This patch also modifies hrtimer functions which specified the slack delta as a unsigned long. Signed-off-by: John Stultz <john.stultz@linaro.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Oren Laadan <orenl@cellrox.com> Cc: Ruchi Kandoi <kandoiruchi@google.com> Cc: Rom Lemarchand <romlem@android.com> Cc: Kees Cook <keescook@chromium.org> Cc: Android Kernel Team <kernel-team@android.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-04timers: Use proper base migration in add_timer_on()Tejun Heo1-3/+19
Regardless of the previous CPU a timer was on, add_timer_on() currently simply sets timer->flags to the new CPU. As the caller must be seeing the timer as idle, this is locally fine, but the timer leaving the old base while unlocked can lead to race conditions as follows. Let's say timer was on cpu 0. cpu 0 cpu 1 ----------------------------------------------------------------------------- del_timer(timer) succeeds del_timer(timer) lock_timer_base(timer) locks cpu_0_base add_timer_on(timer, 1) spin_lock(&cpu_1_base->lock) timer->flags set to cpu_1_base operates on @timer operates on @timer This triggered with mod_delayed_work_on() which contains "if (del_timer()) add_timer_on()" sequence eventually leading to the following oops. BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff810ca6e9>] detach_if_pending+0x69/0x1a0 ... Workqueue: wqthrash wqthrash_workfunc [wqthrash] task: ffff8800172ca680 ti: ffff8800172d0000 task.ti: ffff8800172d0000 RIP: 0010:[<ffffffff810ca6e9>] [<ffffffff810ca6e9>] detach_if_pending+0x69/0x1a0 ... Call Trace: [<ffffffff810cb0b4>] del_timer+0x44/0x60 [<ffffffff8106e836>] try_to_grab_pending+0xb6/0x160 [<ffffffff8106e913>] mod_delayed_work_on+0x33/0x80 [<ffffffffa0000081>] wqthrash_workfunc+0x61/0x90 [wqthrash] [<ffffffff8106dba8>] process_one_work+0x1e8/0x650 [<ffffffff8106e05e>] worker_thread+0x4e/0x450 [<ffffffff810746af>] kthread+0xef/0x110 [<ffffffff8185980f>] ret_from_fork+0x3f/0x70 Fix it by updating add_timer_on() to perform proper migration as __mod_timer() does. Reported-and-tested-by: Jeff Layton <jlayton@poochiereds.net> Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Chris Worley <chris.worley@primarydata.com> Cc: bfields@fieldses.org Cc: Michael Skralivetsky <michael.skralivetsky@primarydata.com> Cc: Trond Myklebust <trond.myklebust@primarydata.com> Cc: Shaohua Li <shli@fb.com> Cc: Jeff Layton <jlayton@poochiereds.net> Cc: kernel-team@fb.com Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/20151029103113.2f893924@tlielax.poochiereds.net Link: http://lkml.kernel.org/r/20151104171533.GI5749@mtj.duckdns.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-10-11timers: Use __fls in apply_slack()Rasmus Villemoes1-1/+1
In apply_slack(), find_last_bit() is applied to a bitmask consisting of precisely BITS_PER_LONG bits. Since mask is non-zero, we might as well eliminate the function call and use __fls() directly. On x86_64, this shaves 23 bytes of the only caller, mod_timer(). This also gets rid of Coverity CID 1192106, but that is a false positive: Coverity is not aware that mask != 0 implies that find_last_bit will not return BITS_PER_LONG. Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/1443771931-6284-1-git-send-email-linux@rasmusvillemoes.dk Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-09-22timers: Fix data race in timer_stats_account_timer()Dmitry Vyukov1-2/+9
timer_stats_account_timer() reads timer->start_site, then checks it for NULL and then re-reads it again, while timer_stats_timer_clear_start_info() can concurrently reset timer->start_site to NULL. This should not lead to crashes, but can double number of entries in timer stats as start_site is used during comparison, the doubled entries will have unuseful NULL start_site. Read timer->start_site only once in timer_stats_account_timer(). The data race was found with KernelThreadSanitizer (KTSAN). Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Cc: andreyknvl@google.com Cc: glider@google.com Cc: kcc@google.com Cc: ktsan@googlegroups.com Cc: john.stultz@linaro.org Link: http://lkml.kernel.org/r/1442584463-69553-1-git-send-email-dvyukov@google.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-08-18timer: Write timer->flags atomicallyEric Dumazet1-2/+2
lock_timer_base() cannot prevent the following : CPU1 ( in __mod_timer() timer->flags |= TIMER_MIGRATING; spin_unlock(&base->lock); base = new_base; spin_lock(&base->lock); // The next line clears TIMER_MIGRATING timer->flags &= ~TIMER_BASEMASK; CPU2 (in lock_timer_base()) see timer base is cpu0 base spin_lock_irqsave(&base->lock, *flags); if (timer->flags == tf) return base; // oops, wrong base timer->flags |= base->cpu // too late We must write timer->flags in one go, otherwise we can fool other cpus. Fixes: bc7a34b8b9eb ("timer: Reduce timer migration overhead if disabled") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Jon Christopherson <jon@jons.org> Cc: David Miller <davem@davemloft.net> Cc: xen-devel@lists.xen.org Cc: david.vrabel@citrix.com Cc: Sander Eikelenboom <linux@eikelenboom.it> Link: http://lkml.kernel.org/r/1439831928.32680.11.camel@edumazet-glaptop2.roam.corp.google.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de>
2015-06-26timer: Fix hotplug regressionThomas Gleixner1-1/+2
The recent timer wheel rework removed the get/put_cpu_var() pair in the hotplug migration code, which results in: BUG: using smp_processor_id() in preemptible [00000000] code: hib.sh/2845 ... [<ffffffff810d4fa3>] timer_cpu_notify+0x53/0x12 That hunk is a leftover from an earlier iteration and went unnoticed so far. Restore the previous code which was obviously correct. Fixes: 0eeda71bc30d 'timer: Replace timer base by a cpu index' Reported-and_tested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19timer: Minimize nohz off overheadThomas Gleixner1-4/+12
If nohz is disabled on the kernel command line the [hr]timer code still calls wake_up_nohz_cpu() and tick_nohz_full_cpu(), a pretty pointless exercise. Cache nohz_active in [hr]timer per cpu bases and avoid the overhead. Before: 48.10% hog [.] main 15.25% [kernel] [k] _raw_spin_lock_irqsave 9.76% [kernel] [k] _raw_spin_unlock_irqrestore 6.50% [kernel] [k] mod_timer 6.44% [kernel] [k] lock_timer_base.isra.38 3.87% [kernel] [k] detach_if_pending 3.80% [kernel] [k] del_timer 2.67% [kernel] [k] internal_add_timer 1.33% [kernel] [k] __internal_add_timer 0.73% [kernel] [k] timerfn 0.54% [kernel] [k] wake_up_nohz_cpu After: 48.73% hog [.] main 15.36% [kernel] [k] _raw_spin_lock_irqsave 9.77% [kernel] [k] _raw_spin_unlock_irqrestore 6.61% [kernel] [k] lock_timer_base.isra.38 6.42% [kernel] [k] mod_timer 3.90% [kernel] [k] detach_if_pending 3.76% [kernel] [k] del_timer 2.41% [kernel] [k] internal_add_timer 1.39% [kernel] [k] __internal_add_timer 0.76% [kernel] [k] timerfn We probably should have a cached value for nohz full in the per cpu bases as well to avoid the cpumask check. The base cache line is hot already, the cpumask not necessarily. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Joonwoo Park <joonwoop@codeaurora.org> Cc: Wenbo Wang <wenbo.wang@memblaze.com> Link: http://lkml.kernel.org/r/20150526224512.207378134@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19timer: Reduce timer migration overhead if disabledThomas Gleixner1-5/+54
Eric reported that the timer_migration sysctl is not really nice performance wise as it needs to check at every timer insertion whether the feature is enabled or not. Further the check does not live in the timer code, so we have an extra function call which checks an extra cache line to figure out that it is disabled. We can do better and store that information in the per cpu (hr)timer bases. I pondered to use a static key, but that's a nightmare to update from the nohz code and the timer base cache line is hot anyway when we select a timer base. The old logic enabled the timer migration unconditionally if CONFIG_NO_HZ was set even if nohz was disabled on the kernel command line. With this modification, we start off with migration disabled. The user visible sysctl is still set to enabled. If the kernel switches to NOHZ migration is enabled, if the user did not disable it via the sysctl prior to the switch. If nohz=off is on the kernel command line, migration stays disabled no matter what. Before: 47.76% hog [.] main 14.84% [kernel] [k] _raw_spin_lock_irqsave 9.55% [kernel] [k] _raw_spin_unlock_irqrestore 6.71% [kernel] [k] mod_timer 6.24% [kernel] [k] lock_timer_base.isra.38 3.76% [kernel] [k] detach_if_pending 3.71% [kernel] [k] del_timer 2.50% [kernel] [k] internal_add_timer 1.51% [kernel] [k] get_nohz_timer_target 1.28% [kernel] [k] __internal_add_timer 0.78% [kernel] [k] timerfn 0.48% [kernel] [k] wake_up_nohz_cpu After: 48.10% hog [.] main 15.25% [kernel] [k] _raw_spin_lock_irqsave 9.76% [kernel] [k] _raw_spin_unlock_irqrestore 6.50% [kernel] [k] mod_timer 6.44% [kernel] [k] lock_timer_base.isra.38 3.87% [kernel] [k] detach_if_pending 3.80% [kernel] [k] del_timer 2.67% [kernel] [k] internal_add_timer 1.33% [kernel] [k] __internal_add_timer 0.73% [kernel] [k] timerfn 0.54% [kernel] [k] wake_up_nohz_cpu Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Joonwoo Park <joonwoop@codeaurora.org> Cc: Wenbo Wang <wenbo.wang@memblaze.com> Link: http://lkml.kernel.org/r/20150526224512.127050787@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19timer: Stats: Simplify the flags handlingThomas Gleixner1-5/+2
Simplify the handling of the flag storage for the timer statistics. No intermediate storage anymore. Just hand over the flags field. I left the printout of 'deferrable' for now because changing this would be an ABI update and I have no idea how strong people feel about that. OTOH, I wonder whether we should kill the whole timer stats stuff because all of that information can be retrieved via ftrace/perf as well. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Joonwoo Park <joonwoop@codeaurora.org> Cc: Wenbo Wang <wenbo.wang@memblaze.com> Link: http://lkml.kernel.org/r/20150526224512.046626248@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19timer: Replace timer base by a cpu indexThomas Gleixner1-91/+36
Instead of storing a pointer to the per cpu tvec_base we can simply cache a CPU index in the timer_list and use that to get hold of the correct per cpu tvec_base. This is only used in lock_timer_base() and the slightly larger code is peanuts versus the spinlock operation and the d-cache foot print of the timer wheel. Aside of that this allows to get rid of following nuisances: - boot_tvec_base That statically allocated 4k bss data is just kept around so the timer has a home when it gets statically initialized. It serves no other purpose. With the CPU index we assign the timer to CPU0 at static initialization time and therefor can avoid the whole boot_tvec_base dance. That also simplifies the init code, which just can use the per cpu base. Before: text data bss dec hex filename 17491 9201 4160 30852 7884 ../build/kernel/time/timer.o After: text data bss dec hex filename 17440 9193 0 26633 6809 ../build/kernel/time/timer.o - Overloading the base pointer with various flags The CPU index has enough space to hold the flags (deferrable, irqsafe) so we can get rid of the extra masking and bit fiddling with the base pointer. As a benefit we reduce the size of struct timer_list on 64 bit machines. 4 - 8 bytes, a size reduction up to 15% per struct timer_list, which is a real win as we have tons of them embedded in other structs. This changes also the newly added deferrable printout of the timer start trace point to capture and print all timer->flags, which allows us to decode the target cpu of the timer as well. We might have used bitfields for this, but that would change the static initializers and the init function for no value to accomodate big endian bitfields. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Joonwoo Park <joonwoop@codeaurora.org> Cc: Wenbo Wang <wenbo.wang@memblaze.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Badhri Jagan Sridharan <Badhri@google.com> Link: http://lkml.kernel.org/r/20150526224511.950084301@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19timer: Use hlist for the timer wheel hash bucketsThomas Gleixner1-37/+27
This reduces the size of struct tvec_base by 50% and results in slightly smaller code as well. Before: struct tvec_base: size: 8256, cachelines: 129 text data bss dec hex filename 17698 13297 8256 39251 9953 ../build/kernel/time/timer.o After: struct tvec_base: 4160, cachelines: 65 text data bss dec hex filename 17491 9201 4160 30852 7884 ../build/kernel/time/timer.o Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Joonwoo Park <joonwoop@codeaurora.org> Cc: Wenbo Wang <wenbo.wang@memblaze.com> Link: http://lkml.kernel.org/r/20150526224511.854731214@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19timer: Remove FIFO "guarantee"Thomas Gleixner1-4/+2
The FIFO guarantee is only there if two timers are queued into the same bucket at the same jiffie on the same cpu: - The slack value depends on the delta between expiry and enqueue time, so the resulting expiry time can be different for timers which are queued in different jiffies. - Timers which are queued into the secondary array end up after a later queued timer which was queued into the primary array due to cascading. - Timers can end up on different cpus due to the NOHZ target moving around. Obviously there is no guarantee of expiry ordering between cpus. So anything which relies on FIFO behaviour of the timer wheel is broken already. This is a preparatory patch for converting the timer wheel to hlist which reduces the memory foot print of the wheel by 50%. It's a seperate patch so any (unlikely to happen) regression caused by this can be identified clearly. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Joonwoo Park <joonwoop@codeaurora.org> Cc: Wenbo Wang <wenbo.wang@memblaze.com> Cc: George Spelvin <linux@horizon.com> Link: http://lkml.kernel.org/r/20150526224511.757520403@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19timers: Sanitize catchup_timer_jiffies() usageThomas Gleixner1-24/+16
catchup_timer_jiffies() has been applied blindly to several functions without looking for possible better ways to do it. 1) internal_add_timer() Move the update to base->all_timers before we actually insert the timer into the wheel. 2) detach_if_pending() Again the update to base->all_timers allows us to explicitely do the timer_jiffies update in place, if this was the last timer which got removed. 3) __run_timers() We only check on entry, which is silly, because base->timer_jiffies can be behind - especially on NOHZ kernels - and if there is a single deferrable timer somewhere between base->timer_jiffies and jiffies we expire it and then loop until base->timer_jiffies == jiffies. Move it into the loop. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Joonwoo Park <joonwoop@codeaurora.org> Cc: Wenbo Wang <wenbo.wang@memblaze.com> Link: http://lkml.kernel.org/r/20150526224511.662994644@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-05-22tracing: timer: Add deferrable flag to timer_startBadhri Jagan Sridharan1-1/+1
The timer_start event now shows whether the timer is deferrable in case of a low-res timer. The debug_activate function now includes a deferrable flag while calling the trace_timer_start event. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Badhri Jagan Sridharan <Badhri@google.com> [jstultz: Fixed minor whitespace and grammer tweaks pointed out by Ingo] Signed-off-by: John Stultz <john.stultz@linaro.org>
2015-05-05timer: Use timer->base for flag checksJoonwoo Park1-1/+1
At present, internal_add_timer() examines flags with 'base' which doesn't contain flags. Examine with 'timer->base' to avoid unnecessary waking up of nohz CPU when timer base has TIMER_DEFERRABLE set. Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org> Cc: sboyd@codeaurora.org Cc: skannan@codeaurora.org Cc: John Stultz <john.stultz@linaro.org> Link: http://lkml.kernel.org/r/1430187709-21087-1-git-send-email-joonwoop@codeaurora.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-04-22timer: Put usleep_range into the __sched sectionThomas Gleixner1-1/+1
do_usleep_range() and schedule_hrtimeout_range() are __sched as well. So it makes no sense to have the exported function in a different section. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/20150414203503.833709502@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-04-22timer: Remove pointless return value of do_usleep_range()Thomas Gleixner1-2/+2
The only user ignores it anyway and rightfully so. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/20150414203503.756060258@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-04-22tick: Nohz: Rework next timer evaluationThomas Gleixner1-37/+34
The evaluation of the next timer in the nohz code is based on jiffies while all the tick internals are nano seconds based. We have also to convert hrtimer nanoseconds to jiffies in the !highres case. That's just wrong and introduces interesting corner cases. Turn it around and convert the next timer wheel timer expiry and the rcu event to clock monotonic and base all calculations on nanoseconds. That identifies the case where no timer is pending clearly with an absolute expiry value of KTIME_MAX. Makes the code more readable and gets rid of the jiffies magic in the nohz code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Link: http://lkml.kernel.org/r/20150414203502.184198593@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-04-22hrtimer: Get rid of hrtimer softirqThomas Gleixner1-2/+0
hrtimer softirq is a leftover from the initial implementation and serves only the purpose to handle the enqueueing of already expired timers in the high resolution timer mode. We discussed whether we change the return value and force all start sites to handle that the timer is already expired, but that would be a Herculean task and I'm not sure whether its a good idea to enforce that handling on everyone. A simpler solution is to enforce a timer interrupt instead of raising and scheduling a softirq. Just use the existing infrastructure to do so and remove all the softirq leftovers. The HRTIMER softirq enum is now unused, but kept around because trace parsers rely on the existing numbering. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/20150414203501.840834708@linutronix.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-04-02timer: Further simplify the SMP and HOTPLUG logicPeter Zijlstra1-8/+15
Remove one CONFIG_HOTPLUG_CPU #ifdef in trade for introducing one CONFIG_SMP #ifdef. The CONFIG_SMP ifdef avoids declaring the per-CPU __tvec_bases storage on UP systems since they already have boot_tvec_bases. Also (re)add a runtime check on the base alignment -- for the paranoid amongst us :-) Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/fdd2d35e169bdc554ffa3fe77f77716298c75ada.1427814611.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02timer: Don't initialize 'tvec_base' on hotplugViresh Kumar1-55/+43
There is no need to call init_timers_cpu() on every CPU hotplug event, there is not much we need to reset. - Timer-lists are already empty at the end of migrate_timers(). - timer_jiffies will be refreshed while adding a new timer, after the CPU is online again. - active_timers and all_timers can be reset from migrate_timers(). Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/54a1c30ea7b805af55beb220cadf5a07a21b0a4d.1427814611.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02timer: Allocate per-cpu tvec_base's staticallyPeter Zijlstra1-29/+19
Memory for the 'tvec_base' array is allocated separately for the boot CPU (statically) and non-boot CPUs (dynamically). The reason is because __TIMER_INITIALIZER() needs to set ->base to a valid pointer (because we've made NULL special, hint: lock_timer_base()) and we cannot get a compile time pointer to per-cpu entries because we don't know where we'll map the section, even for the boot cpu. This can be simplified a bit by statically allocating per-cpu memory. The only disadvantage is that memory for one of the structures will stay unused, i.e. for the boot CPU, which uses boot_tvec_bases. This will also guarantee that tvec_base is cacheline aligned. Even though tvec_base has ____cacheline_aligned stuck on, kzalloc_node() does not actually respect that (but guarantees a minimum u64 alignment). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/17cdf560f2727f687ab159707d0aa591f8a2f82d.1427814611.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04rcu: Remove "cpu" argument to rcu_check_callbacks()Paul E. McKenney1-2/+1
The "cpu" argument was kept around on the off-chance that RCU might offload scheduler-clock interrupts. However, this offload approach has been replaced by NO_HZ_FULL, which offloads -all- RCU processing from qualifying CPUs. It is therefore time to remove the "cpu" argument to rcu_check_callbacks(), which this commit does. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
2014-10-15Merge branch 'for-3.18-consistent-ops' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu Pull percpu consistent-ops changes from Tejun Heo: "Way back, before the current percpu allocator was implemented, static and dynamic percpu memory areas were allocated and handled separately and had their own accessors. The distinction has been gone for many years now; however, the now duplicate two sets of accessors remained with the pointer based ones - this_cpu_*() - evolving various other operations over time. During the process, we also accumulated other inconsistent operations. This pull request contains Christoph's patches to clean up the duplicate accessor situation. __get_cpu_var() uses are replaced with with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr(). Unfortunately, the former sometimes is tricky thanks to C being a bit messy with the distinction between lvalues and pointers, which led to a rather ugly solution for cpumask_var_t involving the introduction of this_cpu_cpumask_var_ptr(). This converts most of the uses but not all. Christoph will follow up with the remaining conversions in this merge window and hopefully remove the obsolete accessors" * 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits) irqchip: Properly fetch the per cpu offset percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write. percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t Revert "powerpc: Replace __get_cpu_var uses" percpu: Remove __this_cpu_ptr clocksource: Replace __this_cpu_ptr with raw_cpu_ptr sparc: Replace __get_cpu_var uses avr32: Replace __get_cpu_var with __this_cpu_write blackfin: Replace __get_cpu_var uses tile: Use this_cpu_ptr() for hardware counters tile: Replace __get_cpu_var uses powerpc: Replace __get_cpu_var uses alpha: Replace __get_cpu_var ia64: Replace __get_cpu_var uses s390: cio driver &__get_cpu_var replacements s390: Replace __get_cpu_var uses mips: Replace __get_cpu_var uses MIPS: Replace __get_cpu_var uses in FPU emulator. arm: Replace __this_cpu_ptr with raw_cpu_ptr ...
2014-09-13irq_work: Force raised irq work to run on irq work interruptFrederic Weisbecker1-1/+1
The nohz full kick, which restarts the tick when any resource depend on it, can't be executed anywhere given the operation it does on timers. If it is called from the scheduler or timers code, chances are that we run into a deadlock. This is why we run the nohz full kick from an irq work. That way we make sure that the kick runs on a virgin context. However if that's the case when irq work runs in its own dedicated self-ipi, things are different for the big bunch of archs that don't support the self triggered way. In order to support them, irq works are also handled by the timer interrupt as fallback. Now when irq works run on the timer interrupt, the context isn't blank. More precisely, they can run in the context of the hrtimer that runs the tick. But the nohz kick cancels and restarts this hrtimer and cancelling an hrtimer from itself isn't allowed. This is why we run in an endless loop: Kernel panic - not syncing: Watchdog detected hard LOCKUP on cpu 2 CPU: 2 PID: 7538 Comm: kworker/u8:8 Not tainted 3.16.0+ #34 Workqueue: btrfs-endio-write normal_work_helper [btrfs] ffff880244c06c88 000000001b486fe1 ffff880244c06bf0 ffffffff8a7f1e37 ffffffff8ac52a18 ffff880244c06c78 ffffffff8a7ef928 0000000000000010 ffff880244c06c88 ffff880244c06c20 000000001b486fe1 0000000000000000 Call Trace: <NMI[<ffffffff8a7f1e37>] dump_stack+0x4e/0x7a [<ffffffff8a7ef928>] panic+0xd4/0x207 [<ffffffff8a1450e8>] watchdog_overflow_callback+0x118/0x120 [<ffffffff8a186b0e>] __perf_event_overflow+0xae/0x350 [<ffffffff8a184f80>] ? perf_event_task_disable+0xa0/0xa0 [<ffffffff8a01a4cf>] ? x86_perf_event_set_period+0xbf/0x150 [<ffffffff8a187934>] perf_event_overflow+0x14/0x20 [<ffffffff8a020386>] intel_pmu_handle_irq+0x206/0x410 [<ffffffff8a01937b>] perf_event_nmi_handler+0x2b/0x50 [<ffffffff8a007b72>] nmi_handle+0xd2/0x390 [<ffffffff8a007aa5>] ? nmi_handle+0x5/0x390 [<ffffffff8a0cb7f8>] ? match_held_lock+0x8/0x1b0 [<ffffffff8a008062>] default_do_nmi+0x72/0x1c0 [<ffffffff8a008268>] do_nmi+0xb8/0x100 [<ffffffff8a7ff66a>] end_repeat_nmi+0x1e/0x2e [<ffffffff8a0cb7f8>] ? match_held_lock+0x8/0x1b0 [<ffffffff8a0cb7f8>] ? match_held_lock+0x8/0x1b0 [<ffffffff8a0cb7f8>] ? match_held_lock+0x8/0x1b0 <<EOE><IRQ[<ffffffff8a0ccd2f>] lock_acquired+0xaf/0x450 [<ffffffff8a0f74c5>] ? lock_hrtimer_base.isra.20+0x25/0x50 [<ffffffff8a7fc678>] _raw_spin_lock_irqsave+0x78/0x90 [<ffffffff8a0f74c5>] ? lock_hrtimer_base.isra.20+0x25/0x50 [<ffffffff8a0f74c5>] lock_hrtimer_base.isra.20+0x25/0x50 [<ffffffff8a0f7723>] hrtimer_try_to_cancel+0x33/0x1e0 [<ffffffff8a0f78ea>] hrtimer_cancel+0x1a/0x30 [<ffffffff8a109237>] tick_nohz_restart+0x17/0x90 [<ffffffff8a10a213>] __tick_nohz_full_check+0xc3/0x100 [<ffffffff8a10a25e>] nohz_full_kick_work_func+0xe/0x10 [<ffffffff8a17c884>] irq_work_run_list+0x44/0x70 [<ffffffff8a17c8da>] irq_work_run+0x2a/0x50 [<ffffffff8a0f700b>] update_process_times+0x5b/0x70 [<ffffffff8a109005>] tick_sched_handle.isra.21+0x25/0x60 [<ffffffff8a109b81>] tick_sched_timer+0x41/0x60 [<ffffffff8a0f7aa2>] __run_hrtimer+0x72/0x470 [<ffffffff8a109b40>] ? tick_sched_do_timer+0xb0/0xb0 [<ffffffff8a0f8707>] hrtimer_interrupt+0x117/0x270 [<ffffffff8a034357>] local_apic_timer_interrupt+0x37/0x60 [<ffffffff8a80010f>] smp_apic_timer_interrupt+0x3f/0x50 [<ffffffff8a7fe52f>] apic_timer_interrupt+0x6f/0x80 To fix this we force non-lazy irq works to run on irq work self-IPIs when available. That ability of the arch to trigger irq work self IPIs is available with arch_irq_work_has_interrupt(). Reported-by: Catalin Iacob <iacobcatalin@gmail.com> Reported-by: Dave Jones <davej@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2014-08-26time: Replace __get_cpu_var usesChristoph Lameter1-1/+1
Convert uses of __get_cpu_var for creating a address from a percpu offset to this_cpu_ptr. The two cases where get_cpu_var is used to actually access a percpu variable are changed to use this_cpu_read/raw_cpu_read. Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-06-23timer: Kick dynticks targets on mod_timer*() callsViresh Kumar1-16/+16
When a timer is enqueued or modified on a dynticks target, that CPU must re-evaluate the next tick to service that timer. The tick re-evaluation is performed by an IPI kick on the target. Now while we correctly call wake_up_nohz_cpu() from add_timer_on(), the mod_timer*() API family doesn't support so well dynticks targets. The reason for this is likely that __mod_timer() isn't supposed to select an idle target for a timer, unless that target is the current CPU, in which case a dynticks idle kick isn't actually needed. But there is a small race window lurking behind that assumption: the elected target has all the time to turn dynticks idle between the call to get_nohz_timer_target() and the locking of its base. Hence a risk that we enqueue a timer on a dynticks idle destination without kicking it. As a result, the timer might be serviced too late in the future. Also a target elected by __mod_timer() can be in full dynticks mode and thus require to be kicked as well. And unlike idle dynticks, this concern both local and remote targets. To fix this whole issue, lets centralize the dynticks kick to internal_add_timer() so that it is well handled for all sort of timer enqueue. Even timer migration is concerned so that a full dynticks target is correctly kicked as needed when timers are migrating to it. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/1403393357-2070-3-git-send-email-fweisbec@gmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-06-23timer: Store cpu-number in struct tvec_baseViresh Kumar1-0/+2
Timers are serviced by the tick. But when a timer is enqueued on a dynticks target, we need to kick it in order to make it reconsider the next tick to schedule to correctly handle the timer's expiring time. Now while this kick is correctly performed for add_timer_on(), the mod_timer*() family has been a bit neglected. To prepare for fixing this, we need internal_add_timer() to be able to resolve the CPU target associated to a timer's object 'base' so that the kick can be centralized there. This can't be passed as an argument as not all the callers know the CPU number of a timer's base. So lets store it in the struct tvec_base to resolve the CPU without much overhead. It is set once for good at every CPU's first boot. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Link: http://lkml.kernel.org/r/1403393357-2070-2-git-send-email-fweisbec@gmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-06-23time/timers: Move all time(r) related files into kernel/timeThomas Gleixner1-0/+1734
Except for Kconfig.HZ. That needs a separate treatment. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>