summaryrefslogtreecommitdiff
path: root/kernel/cpu.c
AgeCommit message (Collapse)AuthorFilesLines
2018-08-15cpu/hotplug: Non-SMP machines do not make use of booted_onceAbel Vesa1-0/+2
Commit 0cc3cd21657b ("cpu/hotplug: Boot HT siblings at least once") breaks non-SMP builds. [ I suspect the 'bool' fields should just be made to be bitfields and be exposed regardless of configuration, but that's a separate cleanup that I'll leave to the owners of this file for later. - Linus ] Fixes: 0cc3cd21657b ("cpu/hotplug: Boot HT siblings at least once") Cc: Dave Hansen <dave.hansen@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Abel Vesa <abelvesa@linux.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-14Merge tag 'pm-4.19-rc1' of ↵Linus Torvalds1-0/+6
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "These add a new framework for CPU idle time injection, to be used by all of the idle injection code in the kernel in the future, fix some issues and add a number of relatively small extensions in multiple places. Specifics: - Add a new framework for CPU idle time injection (Daniel Lezcano). - Add AVS support to the armada-37xx cpufreq driver (Gregory CLEMENT). - Add support for current CPU frequency reporting to the ACPI CPPC cpufreq driver (George Cherian). - Rework the cooling device registration in the imx6q/thermal driver (Bastian Stender). - Make the pcc-cpufreq driver refuse to work with dynamic scaling governors on systems with many CPUs to avoid scalability issues with it (Rafael Wysocki). - Fix the intel_pstate driver to report different maximum CPU frequencies on systems where they really are different and to ignore the turbo active ratio if hardware-managend P-states (HWP) are in use; make it use the match_string() helper (Xie Yisheng, Srinivas Pandruvada). - Fix a minor deferred probe issue in the qcom-kryo cpufreq driver (Niklas Cassel). - Add a tracepoint for the tracking of frequency limits changes (from Andriod) to the cpufreq core (Ruchi Kandoi). - Fix a circular lock dependency between CPU hotplug and sysfs locking in the cpufreq core reported by lockdep (Waiman Long). - Avoid excessive error reports on driver registration failures in the ARM cpuidle driver (Sudeep Holla). - Add a new device links flag to the driver core to make links go away automatically on supplier driver removal (Vivek Gautam). - Eliminate potential race condition between system-wide power management transitions and system shutdown (Pingfan Liu). - Add a quirk to save NVS memory on system suspend for the ASUS 1025C laptop (Willy Tarreau). - Make more systems use suspend-to-idle (instead of ACPI S3) by default (Tristian Celestin). - Get rid of stack VLA usage in the low-level hibernation code on 64-bit x86 (Kees Cook). - Fix error handling in the hibernation core and mark an expected fall-through switch in it (Chengguang Xu, Gustavo Silva). - Extend the generic power domains (genpd) framework to support attaching a device to a power domain by name (Ulf Hansson). - Fix device reference counting and user limits initialization in the devfreq core (Arvind Yadav, Matthias Kaehlcke). - Fix a few issues in the rk3399_dmc devfreq driver and improve its documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner). - Drop a redundant error message from the exynos-ppmu devfreq driver (Markus Elfring)" * tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (35 commits) PM / reboot: Eliminate race between reboot and suspend PM / hibernate: Mark expected switch fall-through cpufreq: intel_pstate: Ignore turbo active ratio in HWP cpufreq: Fix a circular lock dependency problem cpu/hotplug: Add a cpus_read_trylock() function x86/power/hibernate_64: Remove VLA usage cpufreq: trace frequency limits change cpufreq: intel_pstate: Show different max frequency with turbo 3 and HWP cpufreq: pcc-cpufreq: Disable dynamic scaling on many-CPU systems cpufreq: qcom-kryo: Silently error out on EPROBE_DEFER cpufreq / CPPC: Add cpuinfo_cur_freq support for CPPC cpufreq: armada-37xx: Add AVS support dt-bindings: marvell: Add documentation for the Armada 3700 AVS binding PM / devfreq: rk3399_dmc: Fix duplicated opp table on reload. PM / devfreq: Init user limits from OPP limits, not viceversa PM / devfreq: rk3399_dmc: fix spelling mistakes. PM / devfreq: rk3399_dmc: do not print error when get supply and clk defer. dt-bindings: devfreq: rk3399_dmc: move interrupts to be optional. PM / devfreq: rk3399_dmc: remove wait for dcf irq event. dt-bindings: clock: add rk3399 DDR3 standard speed bins. ...
2018-08-14Merge branch 'l1tf-final' of ↵Linus Torvalds1-12/+268
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Merge L1 Terminal Fault fixes from Thomas Gleixner: "L1TF, aka L1 Terminal Fault, is yet another speculative hardware engineering trainwreck. It's a hardware vulnerability which allows unprivileged speculative access to data which is available in the Level 1 Data Cache when the page table entry controlling the virtual address, which is used for the access, has the Present bit cleared or other reserved bits set. If an instruction accesses a virtual address for which the relevant page table entry (PTE) has the Present bit cleared or other reserved bits set, then speculative execution ignores the invalid PTE and loads the referenced data if it is present in the Level 1 Data Cache, as if the page referenced by the address bits in the PTE was still present and accessible. While this is a purely speculative mechanism and the instruction will raise a page fault when it is retired eventually, the pure act of loading the data and making it available to other speculative instructions opens up the opportunity for side channel attacks to unprivileged malicious code, similar to the Meltdown attack. While Meltdown breaks the user space to kernel space protection, L1TF allows to attack any physical memory address in the system and the attack works across all protection domains. It allows an attack of SGX and also works from inside virtual machines because the speculation bypasses the extended page table (EPT) protection mechanism. The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646 The mitigations provided by this pull request include: - Host side protection by inverting the upper address bits of a non present page table entry so the entry points to uncacheable memory. - Hypervisor protection by flushing L1 Data Cache on VMENTER. - SMT (HyperThreading) control knobs, which allow to 'turn off' SMT by offlining the sibling CPU threads. The knobs are available on the kernel command line and at runtime via sysfs - Control knobs for the hypervisor mitigation, related to L1D flush and SMT control. The knobs are available on the kernel command line and at runtime via sysfs - Extensive documentation about L1TF including various degrees of mitigations. Thanks to all people who have contributed to this in various ways - patches, review, testing, backporting - and the fruitful, sometimes heated, but at the end constructive discussions. There is work in progress to provide other forms of mitigations, which might be less horrible performance wise for a particular kind of workloads, but this is not yet ready for consumption due to their complexity and limitations" * 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits) x86/microcode: Allow late microcode loading with SMT disabled tools headers: Synchronise x86 cpufeatures.h for L1TF additions x86/mm/kmmio: Make the tracer robust against L1TF x86/mm/pat: Make set_memory_np() L1TF safe x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert x86/speculation/l1tf: Invert all not present mappings cpu/hotplug: Fix SMT supported evaluation KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry x86/speculation: Simplify sysfs report of VMX L1TF vulnerability Documentation/l1tf: Remove Yonah processors from not vulnerable list x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr() x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d x86: Don't include linux/irq.h from asm/hardirq.h x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d x86/irq: Demote irq_cpustat_t::__softirq_pending to u16 x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush() x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond' x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush() cpu/hotplug: detect SMT disabled by BIOS ...
2018-08-13Merge branch 'smp-hotplug-for-linus' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull CPU hotplug update from Thomas Gleixner: "A trivial name fix for the hotplug state machine" * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: cpu/hotplug: Clarify CPU hotplug step name for timers
2018-08-13Merge branch 'sched-core-for-linus' of ↵Linus Torvalds1-0/+5
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Thomas Gleixner: - Cleanup and improvement of NUMA balancing - Refactoring and improvements to the PELT (Per Entity Load Tracking) code - Watchdog simplification and related cleanups - The usual pile of small incremental fixes and improvements * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits) watchdog: Reduce message verbosity stop_machine: Reflow cpu_stop_queue_two_works() sched/numa: Move task_numa_placement() closer to numa_migrate_preferred() sched/numa: Use group_weights to identify if migration degrades locality sched/numa: Update the scan period without holding the numa_group lock sched/numa: Remove numa_has_capacity() sched/numa: Modify migrate_swap() to accept additional parameters sched/numa: Remove unused task_capacity from 'struct numa_stats' sched/numa: Skip nodes that are at 'hoplimit' sched/debug: Reverse the order of printing faults sched/numa: Use task faults only if numa_group is not yet set up sched/numa: Set preferred_node based on best_cpu sched/numa: Simplify load_too_imbalanced() sched/numa: Evaluate move once per node sched/numa: Remove redundant field sched/debug: Show the sum wait time of a task group sched/fair: Remove #ifdefs from scale_rt_capacity() sched/core: Remove get_cpu() from sched_fork() sched/cpufreq: Clarify sugov_get_util() sched/sysctl: Remove unused sched_time_avg_ms sysctl ...
2018-08-12init: rename and re-order boot_cpu_state_init()Linus Torvalds1-1/+1
This is purely a preparatory patch for upcoming changes during the 4.19 merge window. We have a function called "boot_cpu_state_init()" that isn't really about the bootup cpu state: that is done much earlier by the similarly named "boot_cpu_init()" (note lack of "state" in name). This function initializes some hotplug CPU state, and needs to run after the percpu data has been properly initialized. It even has a comment to that effect. Except it _doesn't_ actually run after the percpu data has been properly initialized. On x86 it happens to do that, but on at least arm and arm64, the percpu base pointers are initialized by the arch-specific 'smp_prepare_boot_cpu()' hook, which ran _after_ boot_cpu_state_init(). This had some unexpected results, and in particular we have a patch pending for the merge window that did the obvious cleanup of using 'this_cpu_write()' in the cpu hotplug init code: - per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE; + this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); which is obviously the right thing to do. Except because of the ordering issue, it actually failed miserably and unexpectedly on arm64. So this just fixes the ordering, and changes the name of the function to be 'boot_cpu_hotplug_init()' to make it obvious that it's about cpu hotplug state, because the core CPU state was supposed to have already been done earlier. Marked for stable, since the (not yet merged) patch that will show this problem is marked for stable. Reported-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Mian Yousaf Kaukab <yousaf.kaukab@suse.com> Suggested-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-07cpu/hotplug: Fix SMT supported evaluationThomas Gleixner1-13/+28
Josh reported that the late SMT evaluation in cpu_smt_state_init() sets cpu_smt_control to CPU_SMT_NOT_SUPPORTED in case that 'nosmt' was supplied on the kernel command line as it cannot differentiate between SMT disabled by BIOS and SMT soft disable via 'nosmt'. That wreckages the state and makes the sysfs interface unusable. Rework this so that during bringup of the non boot CPUs the availability of SMT is determined in cpu_smt_allowed(). If a newly booted CPU is not a 'primary' thread then set the local cpu_smt_available marker and evaluate this explicitely right after the initial SMP bringup has finished. SMT evaulation on x86 is a trainwreck as the firmware has all the information _before_ booting the kernel, but there is no interface to query it. Fixes: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") Reported-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-07-30cpu/hotplug: Clarify CPU hotplug step name for timersMukesh Ojha1-1/+1
After commit 249d4a9b3246 ("timers: Reinitialize per cpu bases on hotplug") i.e. the introduction of state CPUHP_TIMERS_PREPARE instead of CPUHP_TIMERS_DEAD the step name "timers:dead" is not longer accurate. Rename it to "timers:prepare". [ tglx: Massaged changelog ] Signed-off-by: Mukesh Ojha <mojha@codeaurora.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: gkohli@codeaurora.org Cc: neeraju@codeaurora.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Brendan Jackman <brendan.jackman@arm.com> Cc: Mathieu Malaterre <malat@debian.org> Link: https://lkml.kernel.org/r/1532443668-26810-1-git-send-email-mojha@codeaurora.org
2018-07-26cpu/hotplug: Add a cpus_read_trylock() functionWaiman Long1-0/+6
There are use cases where it can be useful to have a cpus_read_trylock() function to work around circular lock dependency problem involving the cpu_hotplug_lock. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-07-24cpu/hotplug: detect SMT disabled by BIOSJosh Poimboeuf1-0/+9
If SMT is disabled in BIOS, the CPU code doesn't properly detect it. The /sys/devices/system/cpu/smt/control file shows 'on', and the 'l1tf' vulnerabilities file shows SMT as vulnerable. Fix it by forcing 'cpu_smt_control' to CPU_SMT_NOT_SUPPORTED in such a case. Unfortunately the detection can only be done after bringing all the CPUs online, so we have to overwrite any previous writes to the variable. Reported-by: Joe Mario <jmario@redhat.com> Tested-by: Jiri Kosina <jkosina@suse.cz> Fixes: f048c399e0f7 ("x86/topology: Provide topology_smt_supported()") Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org>
2018-07-13cpu/hotplug: Set CPU_SMT_NOT_SUPPORTED earlyThomas Gleixner1-3/+10
The CPU_SMT_NOT_SUPPORTED state is set (if the processor does not support SMT) when the sysfs SMT control file is initialized. That was fine so far as this was only required to make the output of the control file correct and to prevent writes in that case. With the upcoming l1tf command line parameter, this needs to be set up before the L1TF mitigation selection and command line parsing happens. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142323.121795971@linutronix.de
2018-07-13cpu/hotplug: Expose SMT control init functionJiri Kosina1-3/+13
The L1TF mitigation will gain a commend line parameter which allows to set a combination of hypervisor mitigation and SMT control. Expose cpu_smt_disable() so the command line parser can tweak SMT settings. [ tglx: Split out of larger patch and made it preserve an already existing force off state ] Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142323.039715135@linutronix.de
2018-07-09cpu/hotplug: Online siblings when SMT control is turned onThomas Gleixner1-2/+24
Writing 'off' to /sys/devices/system/cpu/smt/control offlines all SMT siblings. Writing 'on' merily enables the abilify to online them, but does not online them automatically. Make 'on' more useful by onlining all offline siblings. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-07-04x86/KVM: Warn user if KVM is loaded SMT and L1TF CPU bug being presentKonrad Rzeszutek Wilk1-0/+1
If the L1TF CPU bug is present we allow the KVM module to be loaded as the major of users that use Linux and KVM have trusted guests and do not want a broken setup. Cloud vendors are the ones that are uncomfortable with CVE 2018-3620 and as such they are the ones that should set nosmt to one. Setting 'nosmt' means that the system administrator also needs to disable SMT (Hyper-threading) in the BIOS, or via the 'nosmt' command line parameter, or via the /sys/devices/system/cpu/smt/control. See commit 05736e4ac13c ("cpu/hotplug: Provide knobs to control SMT"). Other mitigations are to use task affinity, cpu sets, interrupt binding, etc - anything to make sure that _only_ the same guests vCPUs are running on sibling threads. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-07-03watchdog/softlockup: Replace "watchdog/%u" threads with cpu_stop_workPeter Zijlstra1-0/+5
Oleg suggested to replace the "watchdog/%u" threads with cpu_stop_work. That removes one thread per CPU while at the same time fixes softlockup vs SCHED_DEADLINE. But more importantly, it does away with the single smpboot_update_cpumask_percpu_thread() user, which allows cleanups/shrinkage of the smpboot interface. Suggested-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-02cpu/hotplug: Boot HT siblings at least onceThomas Gleixner1-24/+48
Due to the way Machine Check Exceptions work on X86 hyperthreads it's required to boot up _all_ logical cores at least once in order to set the CR4.MCE bit. So instead of ignoring the sibling threads right away, let them boot up once so they can configure themselves. After they came out of the initial boot stage check whether its a "secondary" sibling and cancel the operation which puts the CPU back into offline state. Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Tony Luck <tony.luck@intel.com>
2018-06-21cpu/hotplug: Provide knobs to control SMTThomas Gleixner1-0/+170
Provide a command line and a sysfs knob to control SMT. The command line options are: 'nosmt': Enumerate secondary threads, but do not online them 'nosmt=force': Ignore secondary threads completely during enumeration via MP table and ACPI/MADT. The sysfs control file has the following states (read/write): 'on': SMT is enabled. Secondary threads can be freely onlined 'off': SMT is disabled. Secondary threads, even if enumerated cannot be onlined 'forceoff': SMT is permanentely disabled. Writes to the control file are rejected. 'notsupported': SMT is not supported by the CPU The command line option 'nosmt' sets the sysfs control to 'off'. This can be changed to 'on' to reenable SMT during runtime. The command line option 'nosmt=force' sets the sysfs control to 'forceoff'. This cannot be changed during runtime. When SMT is 'on' and the control file is changed to 'off' then all online secondary threads are offlined and attempts to online a secondary thread later on are rejected. When SMT is 'off' and the control file is changed to 'on' then secondary threads can be onlined again. The 'off' -> 'on' transition does not automatically online the secondary threads. When the control file is set to 'forceoff', the behaviour is the same as setting it to 'off', but the operation is irreversible and later writes to the control file are rejected. When the control status is 'notsupported' then writes to the control file are rejected. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org>
2018-06-21cpu/hotplug: Split do_cpu_down()Thomas Gleixner1-9/+8
Split out the inner workings of do_cpu_down() to allow reuse of that function for the upcoming SMT disabling mechanism. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org>
2018-06-21cpu/hotplug: Make bringup/teardown of smp threads symmetricThomas Gleixner1-2/+1
The asymmetry caused a warning to trigger if the bootup was stopped in state CPUHP_AP_ONLINE_IDLE. The warning no longer triggers as kthread_park() can now be invoked on already or still parked threads. But there is still no reason to have this be asymmetric. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org>
2018-03-15cpu/hotplug: Fix unused function warningArnd Bergmann1-9/+9
The cpuhp_is_ap_state() function is no longer called outside of the CONFIG_SMP #ifdef section, causing a harmless warning: kernel/cpu.c:129:13: error: 'cpuhp_is_ap_state' defined but not used [-Werror=unused-function] This moves the function into the #ifdef to get a clean build again. Fixes: 17a2f1ced028 ("cpu/hotplug: Merge cpuhp_bp_states and cpuhp_ap_states") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Link: https://lkml.kernel.org/r/20180315153829.3819606-1-arnd@arndb.de
2018-03-14cpu/hotplug: Merge cpuhp_bp_states and cpuhp_ap_statesLai Jiangshan1-27/+15
cpuhp_bp_states and cpuhp_ap_states have different set of steps without any conflicting steps, so that they can be merged. The original `[CPUHP_BRINGUP_CPU] = { },` is removed, because the new cpuhp_hp_states has CPUHP_ONLINE index which is larger than CPUHP_BRINGUP_CPU. Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Link: https://lkml.kernel.org/r/20171201135008.21633-1-jiangshanlai@gmail.com
2017-12-31Merge branch 'timers-urgent-for-linus' of ↵Linus Torvalds1-2/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer fixes from Thomas Gleixner: "A pile of fixes for long standing issues with the timer wheel and the NOHZ code: - Prevent timer base confusion accross the nohz switch, which can cause unlocked access and data corruption - Reinitialize the stale base clock on cpu hotplug to prevent subtle side effects including rollovers on 32bit - Prevent an interrupt storm when the timer softirq is already pending caused by tick_nohz_stop_sched_tick() - Move the timer start tracepoint to a place where it actually makes sense - Add documentation to timerqueue functions as they caused confusion several times now" * 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: timerqueue: Document return values of timerqueue_add/del() timers: Invoke timer_start_debug() where it makes sense nohz: Prevent a timer interrupt storm in tick_nohz_stop_sched_tick() timers: Reinitialize per cpu bases on hotplug timers: Use deferrable base independent of base::nohz_active
2017-12-30timers: Reinitialize per cpu bases on hotplugThomas Gleixner1-2/+2
The timer wheel bases are not (re)initialized on CPU hotplug. That leaves them with a potentially stale clk and next_expiry valuem, which can cause trouble then the CPU is plugged. Add a prepare callback which forwards the clock, sets next_expiry to far in the future and reset the control flags to a known state. Set base->must_forward_clk so the first timer which is queued will try to forward the clock to current jiffies. Fixes: 500462a9de65 ("timers: Switch to a non-cascading wheel") Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272152200.2431@nanos
2017-12-27cpu/hotplug: Move inline keyword at the beginning of declarationMathieu Malaterre1-4/+4
Fix non-fatal warnings such as: kernel/cpu.c:95:1: warning: ‘inline’ is not at beginning of declaration [-Wold-style-declaration] static void inline cpuhp_lock_release(bool bringup) { } ^~~~~~ Signed-off-by: Mathieu Malaterre <malat@debian.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Link: https://lkml.kernel.org/r/20171226140855.16583-1-malat@debian.org
2017-12-07Merge branch 'smp-urgent-for-linus' of ↵Linus Torvalds1-5/+5
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull CPU hotplug fix from Ingo Molnar: "A single fix moving the smp-call queue flush step to the intended point in the state machine" * 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: smp/hotplug: Move step CPUHP_AP_SMPCFD_DYING to the correct place
2017-12-06cpu/hotplug: Fix state name in takedown_cpu() commentBrendan Jackman1-2/+2
CPUHP_AP_SCHED_MIGRATE_DYING doesn't exist, it looks like this was supposed to refer to CPUHP_AP_SCHED_STARTING's teardown callback, i.e. sched_cpu_dying(). Signed-off-by: Brendan Jackman <brendan.jackman@arm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20171206105911.28093-1-brendan.jackman@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-28smp/hotplug: Move step CPUHP_AP_SMPCFD_DYING to the correct placeLai Jiangshan1-5/+5
Commit 31487f8328f2 ("smp/cfd: Convert core to hotplug state machine") accidently put this step on the wrong place. The step should be at the cpuhp_ap_states[] rather than the cpuhp_bp_states[]. grep smpcfd /sys/devices/system/cpu/hotplug/states 40: smpcfd:prepare 129: smpcfd:dying "smpcfd:dying" was missing before. So was the invocation of the function smpcfd_dying_cpu(). Fixes: 31487f8328f2 ("smp/cfd: Convert core to hotplug state machine") Signed-off-by: Lai Jiangshan <jiangshanlai@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: stable@vger.kernel.org Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Link: https://lkml.kernel.org/r/20171128131954.81229-1-jiangshanlai@gmail.com
2017-10-21cpu/hotplug: Reset node state after operationThomas Gleixner1-0/+5
The recent rework of the cpu hotplug internals changed the usage of the per cpu state->node field, but missed to clean it up after usage. So subsequent hotplug operations use the stale pointer from a previous operation and hand it into the callback functions. The callbacks then dereference a pointer which either belongs to a different facility or points to freed and potentially reused memory. In either case data corruption and crashes are the obvious consequence. Reset the node and the last pointers in the per cpu state to NULL after the operation which set them has completed. Fixes: 96abb968549c ("smp/hotplug: Allow external multi-instance rollback") Reported-by: Tvrtko Ursulin <tursulin@ursulin.net> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1710211606130.3213@nanos
2017-10-06Merge branch 'core-watchdog-for-linus' of ↵Linus Torvalds1-0/+6
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull watchddog clean-up and fixes from Thomas Gleixner: "The watchdog (hard/softlockup detector) code is pretty much broken in its current state. The patch series addresses this by removing all duct tape and refactoring it into a workable state. The reasons why I ask for inclusion that late in the cycle are: 1) The code causes lockdep splats vs. hotplug locking which get reported over and over. Unfortunately there is no easy fix. 2) The risk of breakage is minimal because it's already broken 3) As 4.14 is a long term stable kernel, I prefer to have working watchdog code in that and the lockdep issues resolved. I wouldn't ask you to pull if 4.14 wouldn't be a LTS kernel or if the solution would be easy to backport. 4) The series was around before the merge window opened, but then got delayed due to the UP failure caused by the for_each_cpu() surprise which we discussed recently. Changes vs. V1: - Addressed your review points - Addressed the warning in the powerpc code which was discovered late - Changed two function names which made sense up to a certain point in the series. Now they match what they do in the end. - Fixed a 'unused variable' warning, which got not detected by the intel robot. I triggered it when trying all possible related config combinations manually. Randconfig testing seems not random enough. The changes have been tested by and reviewed by Don Zickus and tested and acked by Micheal Ellerman for powerpc" * 'core-watchdog-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits) watchdog/core: Put softlockup_threads_initialized under ifdef guard watchdog/core: Rename some softlockup_* functions powerpc/watchdog: Make use of watchdog_nmi_probe() watchdog/core, powerpc: Lock cpus across reconfiguration watchdog/core, powerpc: Replace watchdog_nmi_reconfigure() watchdog/hardlockup/perf: Fix spelling mistake: "permanetely" -> "permanently" watchdog/hardlockup/perf: Cure UP damage watchdog/hardlockup: Clean up hotplug locking mess watchdog/hardlockup/perf: Simplify deferred event destroy watchdog/hardlockup/perf: Use new perf CPU enable mechanism watchdog/hardlockup/perf: Implement CPU enable replacement watchdog/hardlockup/perf: Implement init time detection of perf watchdog/hardlockup/perf: Implement init time perf validation watchdog/core: Get rid of the racy update loop watchdog/core, powerpc: Make watchdog_nmi_reconfigure() two stage watchdog/sysctl: Clean up sysctl variable name space watchdog/sysctl: Get rid of the #ifdeffery watchdog/core: Clean up header mess watchdog/core: Further simplify sysctl handling watchdog/core: Get rid of the thread teardown/setup dance ...
2017-09-25smp/hotplug: Hotplug state fail injectionPeter Zijlstra1-1/+59
Add a sysfs file to one-time fail a specific state. This can be used to test the state rollback code paths. Something like this (hotplug-up.sh): #!/bin/bash echo 0 > /debug/sched_debug echo 1 > /debug/tracing/events/cpuhp/enable ALL_STATES=`cat /sys/devices/system/cpu/hotplug/states | cut -d':' -f1` STATES=${1:-$ALL_STATES} for state in $STATES do echo 0 > /sys/devices/system/cpu/cpu1/online echo 0 > /debug/tracing/trace echo Fail state: $state echo $state > /sys/devices/system/cpu/cpu1/hotplug/fail cat /sys/devices/system/cpu/cpu1/hotplug/fail echo 1 > /sys/devices/system/cpu/cpu1/online cat /debug/tracing/trace > hotfail-${state}.trace sleep 1 done Can be used to test for all possible rollback (barring multi-instance) scenarios on CPU-up, CPU-down is a trivial modification of the above. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Cc: max.byungchul.park@gmail.com Link: https://lkml.kernel.org/r/20170920170546.972581715@infradead.org
2017-09-25smp/hotplug: Differentiate the AP completion between up and downPeter Zijlstra1-17/+32
With lockdep-crossrelease we get deadlock reports that span cpu-up and cpu-down chains. Such deadlocks cannot possibly happen because cpu-up and cpu-down are globally serialized. takedown_cpu() irq_lock_sparse() wait_for_completion(&st->done) cpuhp_thread_fun cpuhp_up_callback cpuhp_invoke_callback irq_affinity_online_cpu irq_local_spare() irq_unlock_sparse() complete(&st->done) Now that we have consistent AP state, we can trivially separate the AP completion between up and down using st->bringup. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: max.byungchul.park@gmail.com Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Link: https://lkml.kernel.org/r/20170920170546.872472799@infradead.org
2017-09-25smp/hotplug: Differentiate the AP-work lockdep class between up and downPeter Zijlstra1-9/+32
With lockdep-crossrelease we get deadlock reports that span cpu-up and cpu-down chains. Such deadlocks cannot possibly happen because cpu-up and cpu-down are globally serialized. CPU0 CPU1 CPU2 cpuhp_up_callbacks: takedown_cpu: cpuhp_thread_fun: cpuhp_state irq_lock_sparse() irq_lock_sparse() wait_for_completion() cpuhp_state complete() Now that we have consistent AP state, we can trivially separate the AP-work class between up and down using st->bringup. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: max.byungchul.park@gmail.com Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Link: https://lkml.kernel.org/r/20170920170546.922524234@infradead.org
2017-09-25smp/hotplug: Callback vs state-machine consistencyPeter Zijlstra1-4/+22
While the generic callback functions have an 'int' return and thus appear to be allowed to return error, this is not true for all states. Specifically, what used to be STARTING/DYING are ran with IRQs disabled from critical parts of CPU bringup/teardown and are not allowed to fail. Add WARNs to enforce this rule. But since some callbacks are indeed allowed to fail, we have the situation where a state-machine rollback encounters a failure, in this case we're stuck, we can't go forward and we can't go back. Also add a WARN for that case. AFAICT this is a fundamental 'problem' with no real obvious solution. We want the 'prepare' callbacks to allow failure on either up or down. Typically on prepare-up this would be things like -ENOMEM from resource allocations, and the typical usage in prepare-down would be something like -EBUSY to avoid CPUs being taken away. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Cc: max.byungchul.park@gmail.com Link: https://lkml.kernel.org/r/20170920170546.819539119@infradead.org
2017-09-25smp/hotplug: Rewrite AP state machine corePeter Zijlstra1-115/+206
There is currently no explicit state change on rollback. That is, st->bringup, st->rollback and st->target are not consistent when doing the rollback. Rework the AP state handling to be more coherent. This does mean we have to do a second AP kick-and-wait for rollback, but since rollback is the slow path of a slowpath, this really should not matter. Take this opportunity to simplify the AP thread function to only run a single callback per invocation. This unifies the three single/up/down modes is supports. The looping it used to do for up/down are achieved by retaining should_run and relying on the main smpboot_thread_fn() loop. (I have most of a patch that does the same for the BP state handling, but that's not critical and gets a little complicated because CPUHP_BRINGUP_CPU does the AP handoff from a callback, which gets recursive @st usage, I still have de-fugly that.) [ tglx: Move cpuhp_down_callbacks() et al. into the HOTPLUG_CPU section to avoid gcc complaining about unused functions. Make the HOTPLUG_CPU one piece instead of having two consecutive ifdef sections of the same type. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Cc: max.byungchul.park@gmail.com Link: https://lkml.kernel.org/r/20170920170546.769658088@infradead.org
2017-09-25smp/hotplug: Allow external multi-instance rollbackPeter Zijlstra1-15/+32
Currently the rollback of multi-instance states is handled inside cpuhp_invoke_callback(). The problem is that when we want to allow an explicit state change for rollback, we need to return from the function without doing the rollback. Change cpuhp_invoke_callback() to optionally return the multi-instance state, such that rollback can be done from a subsequent call. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bigeasy@linutronix.de Cc: efault@gmx.de Cc: rostedt@goodmis.org Cc: max.byungchul.park@gmail.com Link: https://lkml.kernel.org/r/20170920170546.720361181@infradead.org
2017-09-14watchdog/hardlockup/perf: Prevent CPU hotplug deadlockThomas Gleixner1-0/+6
The following deadlock is possible in the watchdog hotplug code: cpus_write_lock() ... takedown_cpu() smpboot_park_threads() smpboot_park_thread() kthread_park() ->park() := watchdog_disable() watchdog_nmi_disable() perf_event_release_kernel(); put_event() _free_event() ->destroy() := hw_perf_event_destroy() x86_release_hardware() release_ds_buffers() get_online_cpus() when a per cpu watchdog perf event is destroyed which drops the last reference to the PMU hardware. The cleanup code there invokes get_online_cpus() which instantly deadlocks because the hotplug percpu rwsem is write locked. To solve this add a deferring mechanism: cpus_write_lock() kthread_park() watchdog_nmi_disable(deferred) perf_event_disable(event); move_event_to_deferred(event); .... cpus_write_unlock() cleaup_deferred_events() perf_event_release_kernel() This is still properly serialized against concurrent hotplug via the cpu_add_remove_lock, which is held by the task which initiated the hotplug event. This is also used to handle event destruction when the watchdog threads are parked via other mechanisms than CPU hotplug. Analyzed-by: Peter Zijlstra <peterz@infradead.org> Reported-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194146.884469246@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-04Merge branch 'smp-hotplug-for-linus' of ↵Linus Torvalds1-1/+11
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull CPU hotplug fix from Thomas Gleixner: "A single fix to handle the removal of the first dynamic CPU hotplug state correctly" * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: smp/hotplug: Handle removal correctly in cpuhp_store_callbacks()
2017-07-25rcu: Migrate callbacks earlier in the CPU-offline timelinePaul E. McKenney1-0/+1
RCU callbacks must be migrated away from an outgoing CPU, and this is done near the end of the CPU-hotplug operation, after the outgoing CPU is long gone. Unfortunately, this means that other CPU-hotplug callbacks can execute while the outgoing CPU's callbacks are still immobilized on the long-gone CPU's callback lists. If any of these CPU-hotplug callbacks must wait, either directly or indirectly, for the invocation of any of the immobilized RCU callbacks, the system will hang. This commit avoids such hangs by migrating the callbacks away from the outgoing CPU immediately upon its departure, shortly after the return from __cpu_die() in takedown_cpu(). Thus, RCU is able to advance these callbacks and invoke them, which allows all the after-the-fact CPU-hotplug callbacks to wait on these RCU callbacks without risk of a hang. While in the neighborhood, this commit also moves rcu_send_cbs_to_orphanage() and rcu_adopt_orphan_cbs() under a pre-existing #ifdef to avoid including dead code on the one hand and to avoid define-without-use warnings on the other hand. Reported-by: Jeffrey Hugo <jhugo@codeaurora.org> Link: http://lkml.kernel.org/r/db9c91f6-1b17-6136-84f0-03c3c2581ab4@codeaurora.org Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Richard Weinberger <richard@nod.at>
2017-07-20smp/hotplug: Handle removal correctly in cpuhp_store_callbacks()Ethan Barnes1-1/+11
If cpuhp_store_callbacks() is called for CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, which are the indicators for dynamically allocated states, then cpuhp_store_callbacks() allocates a new dynamic state. The first allocation in each range returns CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN. If cpuhp_remove_state() is invoked for one of these states, then there is no protection against the allocation mechanism. So the removal, which should clear the callbacks and the name, gets a new state assigned and clears that one. As a consequence the state which should be cleared stays initialized. A consecutive CPU hotplug operation dereferences the state callbacks and accesses either freed or reused memory, resulting in crashes. Add a protection against this by checking the name argument for NULL. If it's NULL it's a removal. If not, it's an allocation. [ tglx: Added a comment and massaged changelog ] Fixes: 5b7aa87e0482 ("cpu/hotplug: Implement setup/removal interface") Signed-off-by: Ethan Barnes <ethan.barnes@sandisk.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.or> Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu> Cc: Sebastian Siewior <bigeasy@linutronix.d> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/DM2PR04MB398242FC7776D603D9F99C894A60@DM2PR04MB398.namprd04.prod.outlook.com
2017-07-11smp/hotplug: Replace BUG_ON and react usefulThomas Gleixner1-1/+2
The move of the unpark functions to the control thread moved the BUG_ON() there as well. While it made some sense in the idle thread of the upcoming CPU, it's bogus to crash the control thread on the already online CPU, especially as the function has a return value and the callsite is prepared to handle an error return. Replace it with a WARN_ON_ONCE() and return a proper error code. Fixes: 9cd4f1a4e7a8 ("smp/hotplug: Move unparking of percpu threads to the control CPU") Rightfully-ranted-at-by: Linux Torvalds <torvalds@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-07-06smp/hotplug: Move unparking of percpu threads to the control CPUThomas Gleixner1-18/+19
Vikram reported the following backtrace: BUG: scheduling while atomic: swapper/7/0/0x00000002 CPU: 7 PID: 0 Comm: swapper/7 Not tainted 4.9.32-perf+ #680 schedule schedule_hrtimeout_range_clock schedule_hrtimeout wait_task_inactive __kthread_bind_mask __kthread_bind __kthread_unpark kthread_unpark cpuhp_online_idle cpu_startup_entry secondary_start_kernel He analyzed correctly that a parked cpu hotplug thread of an offlined CPU was still on the runqueue when the CPU came back online and tried to unpark it. This causes the thread which invoked kthread_unpark() to call wait_task_inactive() and subsequently schedule() with preemption disabled. His proposed workaround was to "make sure" that a parked thread has scheduled out when the CPU goes offline, so the situation cannot happen. But that's still wrong because the root cause is not the fact that the percpu thread is still on the runqueue and neither that preemption is disabled, which could be simply solved by enabling preemption before calling kthread_unpark(). The real issue is that the calling thread is the idle task of the upcoming CPU, which is not supposed to call anything which might sleep. The moron, who wrote that code, missed completely that kthread_unpark() might end up in schedule(). The solution is simpler than expected. The thread which controls the hotplug operation is waiting for the CPU to call complete() on the hotplug state completion. So the idle task of the upcoming CPU can set its state to CPUHP_AP_ONLINE_IDLE and invoke complete(). This in turn wakes the control task on a different CPU, which then can safely do the unpark and kick the now unparked hotplug thread of the upcoming CPU to complete the bringup to the final target state. Control CPU AP bringup_cpu(); __cpu_up() ------------> bringup_ap(); bringup_wait_for_ap() wait_for_completion(); cpuhp_online_idle(); <------------ complete(); unpark(AP->stopper); unpark(AP->hotplugthread); while(1) do_idle(); kick(AP->hotplugthread); wait_for_completion(); hotplug_thread() run_online_callbacks(); complete(); Fixes: 8df3e07e7f21 ("cpu/hotplug: Let upcoming cpu bring itself fully up") Reported-by: Vikram Mulukutla <markivx@codeaurora.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Sewior <bigeasy@linutronix.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1707042218020.2131@nanos Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-07-04Merge branch 'smp-hotplug-for-linus' of ↵Linus Torvalds1-148/+93
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull SMP hotplug updates from Thomas Gleixner: "This update is primarily a cleanup of the CPU hotplug locking code. The hotplug locking mechanism is an open coded RWSEM, which allows recursive locking. The main problem with that is the recursive nature as it evades the full lockdep coverage and hides potential deadlocks. The rework replaces the open coded RWSEM with a percpu RWSEM and establishes full lockdep coverage that way. The bulk of the changes fix up recursive locking issues and address the now fully reported potential deadlocks all over the place. Some of these deadlocks have been observed in the RT tree, but on mainline the probability was low enough to hide them away." * 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits) cpu/hotplug: Constify attribute_group structures powerpc: Only obtain cpu_hotplug_lock if called by rtasd ARM/hw_breakpoint: Fix possible recursive locking for arch_hw_breakpoint_init cpu/hotplug: Remove unused check_for_tasks() function perf/core: Don't release cred_guard_mutex if not taken cpuhotplug: Link lock stacks for hotplug callbacks acpi/processor: Prevent cpu hotplug deadlock sched: Provide is_percpu_thread() helper cpu/hotplug: Convert hotplug locking to percpu rwsem s390: Prevent hotplug rwsem recursion arm: Prevent hotplug rwsem recursion arm64: Prevent cpu hotplug rwsem recursion kprobes: Cure hotplug lock ordering issues jump_label: Reorder hotplug lock and jump_label_lock perf/tracing/cpuhotplug: Fix locking order ACPI/processor: Use cpu_hotplug_disable() instead of get_online_cpus() PCI: Replace the racy recursion prevention PCI: Use cpu_hotplug_disable() instead of get_online_cpus() perf/x86/intel: Drop get_online_cpus() in intel_snb_check_microcode() x86/perf: Drop EXPORT of perf_check_microcode ...
2017-06-30cpu/hotplug: Constify attribute_group structuresArvind Yadav1-2/+2
attribute_groups are not supposed to change at runtime. All functions working with attribute_groups provided by <linux/sysfs.h> work with const attribute_group. So mark the non-const structs as const: File size before: text data bss dec hex filename 12582 15361 20 27963 6d3b kernel/cpu.o File size After adding 'const': text data bss dec hex filename 12710 15265 20 27995 6d5b kernel/cpu.o Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: anna-maria@linutronix.de Cc: bigeasy@linutronix.de Cc: boris.ostrovsky@oracle.com Cc: rcochran@linutronix.de Link: http://lkml.kernel.org/r/f9079e94e12b36d245e7adbf67d312bc5d0250c6.1498737970.git.arvind.yadav.cs@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-22genirq/cpuhotplug: Handle managed IRQs on CPU hotplugThomas Gleixner1-0/+5
If a CPU goes offline, interrupts affine to the CPU are moved away. If the outgoing CPU is the last CPU in the affinity mask the migration code breaks the affinity and sets it it all online cpus. This is a problem for affinity managed interrupts as CPU hotplug is often used for power management purposes. If the affinity is broken, the interrupt is not longer affine to the CPUs to which it was allocated. The affinity spreading allows to lay out multi queue devices in a way that they are assigned to a single CPU or a group of CPUs. If the last CPU goes offline, then the queue is not longer used, so the interrupt can be shutdown gracefully and parked until one of the assigned CPUs comes online again. Add a graceful shutdown mechanism into the irq affinity breaking code path, mark the irq as MANAGED_SHUTDOWN and leave the affinity mask unmodified. In the online path, scan the active interrupts for managed interrupts and if the interrupt is functional and the newly online CPU is part of the affinity mask, restart the interrupt if it is marked MANAGED_SHUTDOWN or if the interrupts is started up, try to add the CPU back to the effective affinity mask. Originally-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20170619235447.273417334@linutronix.de
2017-06-12cpu/hotplug: Remove unused check_for_tasks() functionArnd Bergmann1-24/+0
clang -Wunused-function found one remaining function that was apparently meant to be removed in a recent code cleanup: kernel/cpu.c:565:20: warning: unused function 'check_for_tasks' [-Wunused-function] Sebastian explained: The function became unused unintentionally, but there is already a failure check, when a task cannot be removed from the outgoing cpu in the scheduler code, so bringing it back is not really giving any extra value. Fixes: 530e9b76ae8f ("cpu/hotplug: Remove obsolete cpu hotplug register/unregister functions") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Link: http://lkml.kernel.org/r/20170608085544.2257132-1-arnd@arndb.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-06-03cpu/hotplug: Drop the device lock on errorSebastian Andrzej Siewior1-2/+2
If a custom CPU target is specified and that one is not available _or_ can't be interrupted then the code returns to userland without dropping a lock as notices by lockdep: |echo 133 > /sys/devices/system/cpu/cpu7/hotplug/target | ================================================ | [ BUG: lock held when returning to user space! ] | ------------------------------------------------ | bash/503 is leaving the kernel with locks still held! | 1 lock held by bash/503: | #0: (device_hotplug_lock){+.+...}, at: [<ffffffff815b5650>] lock_device_hotplug_sysfs+0x10/0x40 So release the lock then. Fixes: 757c989b9994 ("cpu/hotplug: Make target state writeable") Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/20170602142714.3ogo25f2wbq6fjpj@linutronix.de
2017-05-26cpuhotplug: Link lock stacks for hotplug callbacksThomas Gleixner1-0/+13
The CPU hotplug callbacks are not covered by lockdep versus the cpu hotplug rwsem. CPU0 CPU1 cpuhp_setup_state(STATE, startup, teardown); cpus_read_lock(); invoke_callback_on_ap(); kick_hotplug_thread(ap); wait_for_completion(); hotplug_thread_fn() lock(m); do_stuff(); unlock(m); Lockdep does not know about this dependency and will not trigger on the following code sequence: lock(m); cpus_read_lock(); Add a lockdep map and connect the initiators lock chain with the hotplug thread lock chain, so potential deadlocks can be detected. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20170524081549.709375845@linutronix.de
2017-05-26cpu/hotplug: Convert hotplug locking to percpu rwsemThomas Gleixner1-94/+13
There are no more (known) nested calls to get_online_cpus() and all observed lock ordering problems have been addressed. Replace the magic nested 'rwsem' hackery with a percpu-rwsem. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20170524081549.447014063@linutronix.de
2017-05-26cpu/hotplug: Use stop_machine_cpuslocked() in takedown_cpu()Sebastian Andrzej Siewior1-1/+1
takedown_cpu() is a cpu hotplug function invoking stop_machine(). The cpu hotplug machinery holds the hotplug lock for write. stop_machine() invokes get_online_cpus() as well. This is correct, but prevents the conversion of the hotplug locking to a percpu rwsem. Use stop_machine_cpuslocked() to avoid the nested call. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20170524081548.423292433@linutronix.de
2017-05-26cpu/hotplug: Add __cpuhp_state_add_instance_cpuslocked()Thomas Gleixner1-3/+15
Add cpuslocked() variants for the multi instance registration so this can be called from a cpus_read_lock() protected region. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20170524081547.321782217@linutronix.de