summaryrefslogtreecommitdiff
path: root/kernel/bpf
AgeCommit message (Collapse)AuthorFilesLines
2021-08-17bpf: Allow to specify user-provided bpf_cookie for BPF perf linksAndrii Nakryiko2-12/+19
Add ability for users to specify custom u64 value (bpf_cookie) when creating BPF link for perf_event-backed BPF programs (kprobe/uprobe, perf_event, tracepoints). This is useful for cases when the same BPF program is used for attaching and processing invocation of different tracepoints/kprobes/uprobes in a generic fashion, but such that each invocation is distinguished from each other (e.g., BPF program can look up additional information associated with a specific kernel function without having to rely on function IP lookups). This enables new use cases to be implemented simply and efficiently that previously were possible only through code generation (and thus multiple instances of almost identical BPF program) or compilation at runtime (BCC-style) on target hosts (even more expensive resource-wise). For uprobes it is not even possible in some cases to know function IP before hand (e.g., when attaching to shared library without PID filtering, in which case base load address is not known for a library). This is done by storing u64 bpf_cookie in struct bpf_prog_array_item, corresponding to each attached and run BPF program. Given cgroup BPF programs already use two 8-byte pointers for their needs and cgroup BPF programs don't have (yet?) support for bpf_cookie, reuse that space through union of cgroup_storage and new bpf_cookie field. Make it available to kprobe/tracepoint BPF programs through bpf_trace_run_ctx. This is set by BPF_PROG_RUN_ARRAY, used by kprobe/uprobe/tracepoint BPF program execution code, which luckily is now also split from BPF_PROG_RUN_ARRAY_CG. This run context will be utilized by a new BPF helper giving access to this user-provided cookie value from inside a BPF program. Generic perf_event BPF programs will access this value from perf_event itself through passed in BPF program context. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/bpf/20210815070609.987780-6-andrii@kernel.org
2021-08-17bpf: Implement minimal BPF perf linkAndrii Nakryiko1-7/+98
Introduce a new type of BPF link - BPF perf link. This brings perf_event-based BPF program attachments (perf_event, tracepoints, kprobes, and uprobes) into the common BPF link infrastructure, allowing to list all active perf_event based attachments, auto-detaching BPF program from perf_event when link's FD is closed, get generic BPF link fdinfo/get_info functionality. BPF_LINK_CREATE command expects perf_event's FD as target_fd. No extra flags are currently supported. Force-detaching and atomic BPF program updates are not yet implemented, but with perf_event-based BPF links we now have common framework for this without the need to extend ioctl()-based perf_event interface. One interesting consideration is a new value for bpf_attach_type, which BPF_LINK_CREATE command expects. Generally, it's either 1-to-1 mapping from bpf_attach_type to bpf_prog_type, or many-to-1 mapping from a subset of bpf_attach_types to one bpf_prog_type (e.g., see BPF_PROG_TYPE_SK_SKB or BPF_PROG_TYPE_CGROUP_SOCK). In this case, though, we have three different program types (KPROBE, TRACEPOINT, PERF_EVENT) using the same perf_event-based mechanism, so it's many bpf_prog_types to one bpf_attach_type. I chose to define a single BPF_PERF_EVENT attach type for all of them and adjust link_create()'s logic for checking correspondence between attach type and program type. The alternative would be to define three new attach types (e.g., BPF_KPROBE, BPF_TRACEPOINT, and BPF_PERF_EVENT), but that seemed like unnecessary overkill and BPF_KPROBE will cause naming conflicts with BPF_KPROBE() macro, defined by libbpf. I chose to not do this to avoid unnecessary proliferation of bpf_attach_type enum values and not have to deal with naming conflicts. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/bpf/20210815070609.987780-5-andrii@kernel.org
2021-08-17bpf: Refactor BPF_PROG_RUN_ARRAY family of macros into functionsAndrii Nakryiko1-16/+16
Similar to BPF_PROG_RUN, turn BPF_PROG_RUN_ARRAY macros into proper functions with all the same readability and maintainability benefits. Making them into functions required shuffling around bpf_set_run_ctx/bpf_reset_run_ctx functions. Also, explicitly specifying the type of the BPF prog run callback required adjusting __bpf_prog_run_save_cb() to accept const void *, casted internally to const struct sk_buff. Further, split out a cgroup-specific BPF_PROG_RUN_ARRAY_CG and BPF_PROG_RUN_ARRAY_CG_FLAGS from the more generic BPF_PROG_RUN_ARRAY due to the differences in bpf_run_ctx used for those two different use cases. I think BPF_PROG_RUN_ARRAY_CG would benefit from further refactoring to accept struct cgroup and enum bpf_attach_type instead of bpf_prog_array, fetching cgrp->bpf.effective[type] and RCU-dereferencing it internally. But that required including include/linux/cgroup-defs.h, which I wasn't sure is ok with everyone. The remaining generic BPF_PROG_RUN_ARRAY function will be extended to pass-through user-provided context value in the next patch. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210815070609.987780-3-andrii@kernel.org
2021-08-17bpf: Refactor BPF_PROG_RUN into a functionAndrii Nakryiko5-12/+12
Turn BPF_PROG_RUN into a proper always inlined function. No functional and performance changes are intended, but it makes it much easier to understand what's going on with how BPF programs are actually get executed. It's more obvious what types and callbacks are expected. Also extra () around input parameters can be dropped, as well as `__` variable prefixes intended to avoid naming collisions, which makes the code simpler to read and write. This refactoring also highlighted one extra issue. BPF_PROG_RUN is both a macro and an enum value (BPF_PROG_RUN == BPF_PROG_TEST_RUN). Turning BPF_PROG_RUN into a function causes naming conflict compilation error. So rename BPF_PROG_RUN into lower-case bpf_prog_run(), similar to bpf_prog_run_xdp(), bpf_prog_run_pin_on_cpu(), etc. All existing callers of BPF_PROG_RUN, the macro, are switched to bpf_prog_run() explicitly. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210815070609.987780-2-andrii@kernel.org
2021-08-15bpf: Support "%c" in bpf_bprintf_prepare().Kuniyuki Iwashima1-0/+14
/proc/net/unix uses "%c" to print a single-byte character to escape '\0' in the name of the abstract UNIX domain socket. The following selftest uses it, so this patch adds support for "%c". Note that it does not support wide character ("%lc" and "%llc") for simplicity. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210814015718.42704-3-kuniyu@amazon.co.jp
2021-08-14bpf: Allow bpf_get_netns_cookie in BPF_PROG_TYPE_CGROUP_SOCKOPTStanislav Fomichev1-0/+18
This is similar to existing BPF_PROG_TYPE_CGROUP_SOCK and BPF_PROG_TYPE_CGROUP_SOCK_ADDR. Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210813230530.333779-2-sdf@google.com
2021-08-13bpf: Clear zext_dst of dead insnsIlya Leoshkevich1-0/+1
"access skb fields ok" verifier test fails on s390 with the "verifier bug. zext_dst is set, but no reg is defined" message. The first insns of the test prog are ... 0: 61 01 00 00 00 00 00 00 ldxw %r0,[%r1+0] 8: 35 00 00 01 00 00 00 00 jge %r0,0,1 10: 61 01 00 08 00 00 00 00 ldxw %r0,[%r1+8] ... and the 3rd one is dead (this does not look intentional to me, but this is a separate topic). sanitize_dead_code() converts dead insns into "ja -1", but keeps zext_dst. When opt_subreg_zext_lo32_rnd_hi32() tries to parse such an insn, it sees this discrepancy and bails. This problem can be seen only with JITs whose bpf_jit_needs_zext() returns true. Fix by clearning dead insns' zext_dst. The commits that contributed to this problem are: 1. 5aa5bd14c5f8 ("bpf: add initial suite for selftests"), which introduced the test with the dead code. 2. 5327ed3d44b7 ("bpf: verifier: mark verified-insn with sub-register zext flag"), which introduced the zext_dst flag. 3. 83a2881903f3 ("bpf: Account for BPF_FETCH in insn_has_def32()"), which introduced the sanity check. 4. 9183671af6db ("bpf: Fix leakage under speculation on mispredicted branches"), which bisect points to. It's best to fix this on stable branches that contain the second one, since that's the point where the inconsistency was introduced. Fixes: 5327ed3d44b7 ("bpf: verifier: mark verified-insn with sub-register zext flag") Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210812151811.184086-2-iii@linux.ibm.com
2021-08-13Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski3-5/+10
Conflicts: drivers/net/ethernet/broadcom/bnxt/bnxt_ptp.h 9e26680733d5 ("bnxt_en: Update firmware call to retrieve TX PTP timestamp") 9e518f25802c ("bnxt_en: 1PPS functions to configure TSIO pins") 099fdeda659d ("bnxt_en: Event handler for PPS events") kernel/bpf/helpers.c include/linux/bpf-cgroup.h a2baf4e8bb0f ("bpf: Fix potentially incorrect results with bpf_get_local_storage()") c7603cfa04e7 ("bpf: Add ambient BPF runtime context stored in current") drivers/net/ethernet/mellanox/mlx5/core/pci_irq.c 5957cc557dc5 ("net/mlx5: Set all field of mlx5_irq before inserting it to the xarray") 2d0b41a37679 ("net/mlx5: Refcount mlx5_irq with integer") MAINTAINERS 7b637cd52f02 ("MAINTAINERS: fix Microchip CAN BUS Analyzer Tool entry typo") 7d901a1e878a ("net: phy: add Maxlinear GPY115/21x/24x driver") Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-11bpf: Add rcu_read_lock in bpf_get_current_[ancestor_]cgroup_id() helpersYonghong Song1-6/+16
Currently, if bpf_get_current_cgroup_id() or bpf_get_current_ancestor_cgroup_id() helper is called with sleepable programs e.g., sleepable fentry/fmod_ret/fexit/lsm programs, a rcu warning may appear. For example, if I added the following hack to test_progs/test_lsm sleepable fentry program test_sys_setdomainname: --- a/tools/testing/selftests/bpf/progs/lsm.c +++ b/tools/testing/selftests/bpf/progs/lsm.c @@ -168,6 +168,10 @@ int BPF_PROG(test_sys_setdomainname, struct pt_regs *regs) int buf = 0; long ret; + __u64 cg_id = bpf_get_current_cgroup_id(); + if (cg_id == 1000) + copy_test++; + ret = bpf_copy_from_user(&buf, sizeof(buf), ptr); if (len == -2 && ret == 0 && buf == 1234) copy_test++; I will hit the following rcu warning: include/linux/cgroup.h:481 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by test_progs/260: #0: ffffffffa5173360 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xa0 stack backtrace: CPU: 1 PID: 260 Comm: test_progs Tainted: G O 5.14.0-rc2+ #176 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack_lvl+0x56/0x7b bpf_get_current_cgroup_id+0x9c/0xb1 bpf_prog_a29888d1c6706e09_test_sys_setdomainname+0x3e/0x89c bpf_trampoline_6442469132_0+0x2d/0x1000 __x64_sys_setdomainname+0x5/0x110 do_syscall_64+0x3a/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae I can get similar warning using bpf_get_current_ancestor_cgroup_id() helper. syzbot reported a similar issue in [1] for syscall program. Helper bpf_get_current_cgroup_id() or bpf_get_current_ancestor_cgroup_id() has the following callchain: task_dfl_cgroup task_css_set task_css_set_check and we have #define task_css_set_check(task, __c) \ rcu_dereference_check((task)->cgroups, \ lockdep_is_held(&cgroup_mutex) || \ lockdep_is_held(&css_set_lock) || \ ((task)->flags & PF_EXITING) || (__c)) Since cgroup_mutex/css_set_lock is not held and the task is not existing and rcu read_lock is not held, a warning will be issued. Note that bpf sleepable program is protected by rcu_read_lock_trace(). The above sleepable bpf programs are already protected by migrate_disable(). Adding rcu_read_lock() in these two helpers will silence the above warning. I marked the patch fixing 95b861a7935b ("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing") which added bpf_get_current_ancestor_cgroup_id() to tracing programs in 5.14. I think backporting 5.14 is probably good enough as sleepable progrems are not widely used. This patch should fix [1] as well since syscall program is a sleepable program protected with migrate_disable(). [1] https://lore.kernel.org/bpf/0000000000006d5cab05c7d9bb87@google.com/ Fixes: 95b861a7935b ("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing") Reported-by: syzbot+7ee5c2c09c284495371f@syzkaller.appspotmail.com Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210810230537.2864668-1-yhs@fb.com
2021-08-10bpf, core: Fix kernel-doc notationRandy Dunlap1-1/+6
Fix kernel-doc warnings in kernel/bpf/core.c (found by scripts/kernel-doc and W=1 builds). That is, correct a function name in a comment and add return descriptions for 2 functions. Fixes these kernel-doc warnings: kernel/bpf/core.c:1372: warning: expecting prototype for __bpf_prog_run(). Prototype was for ___bpf_prog_run() instead kernel/bpf/core.c:1372: warning: No description found for return value of '___bpf_prog_run' kernel/bpf/core.c:1883: warning: No description found for return value of 'bpf_prog_select_runtime' Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210809215229.7556-1-rdunlap@infradead.org
2021-08-10bpf: Fix potentially incorrect results with bpf_get_local_storage()Yonghong Song1-2/+2
Commit b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") fixed a bug for bpf_get_local_storage() helper so different tasks won't mess up with each other's percpu local storage. The percpu data contains 8 slots so it can hold up to 8 contexts (same or different tasks), for 8 different program runs, at the same time. This in general is sufficient. But our internal testing showed the following warning multiple times: [...] warning: WARNING: CPU: 13 PID: 41661 at include/linux/bpf-cgroup.h:193 __cgroup_bpf_run_filter_sock_ops+0x13e/0x180 RIP: 0010:__cgroup_bpf_run_filter_sock_ops+0x13e/0x180 <IRQ> tcp_call_bpf.constprop.99+0x93/0xc0 tcp_conn_request+0x41e/0xa50 ? tcp_rcv_state_process+0x203/0xe00 tcp_rcv_state_process+0x203/0xe00 ? sk_filter_trim_cap+0xbc/0x210 ? tcp_v6_inbound_md5_hash.constprop.41+0x44/0x160 tcp_v6_do_rcv+0x181/0x3e0 tcp_v6_rcv+0xc65/0xcb0 ip6_protocol_deliver_rcu+0xbd/0x450 ip6_input_finish+0x11/0x20 ip6_input+0xb5/0xc0 ip6_sublist_rcv_finish+0x37/0x50 ip6_sublist_rcv+0x1dc/0x270 ipv6_list_rcv+0x113/0x140 __netif_receive_skb_list_core+0x1a0/0x210 netif_receive_skb_list_internal+0x186/0x2a0 gro_normal_list.part.170+0x19/0x40 napi_complete_done+0x65/0x150 mlx5e_napi_poll+0x1ae/0x680 __napi_poll+0x25/0x120 net_rx_action+0x11e/0x280 __do_softirq+0xbb/0x271 irq_exit_rcu+0x97/0xa0 common_interrupt+0x7f/0xa0 </IRQ> asm_common_interrupt+0x1e/0x40 RIP: 0010:bpf_prog_1835a9241238291a_tw_egress+0x5/0xbac ? __cgroup_bpf_run_filter_skb+0x378/0x4e0 ? do_softirq+0x34/0x70 ? ip6_finish_output2+0x266/0x590 ? ip6_finish_output+0x66/0xa0 ? ip6_output+0x6c/0x130 ? ip6_xmit+0x279/0x550 ? ip6_dst_check+0x61/0xd0 [...] Using drgn [0] to dump the percpu buffer contents showed that on this CPU slot 0 is still available, but slots 1-7 are occupied and those tasks in slots 1-7 mostly don't exist any more. So we might have issues in bpf_cgroup_storage_unset(). Further debugging confirmed that there is a bug in bpf_cgroup_storage_unset(). Currently, it tries to unset "current" slot with searching from the start. So the following sequence is possible: 1. A task is running and claims slot 0 2. Running BPF program is done, and it checked slot 0 has the "task" and ready to reset it to NULL (not yet). 3. An interrupt happens, another BPF program runs and it claims slot 1 with the *same* task. 4. The unset() in interrupt context releases slot 0 since it matches "task". 5. Interrupt is done, the task in process context reset slot 0. At the end, slot 1 is not reset and the same process can continue to occupy slots 2-7 and finally, when the above step 1-5 is repeated again, step 3 BPF program won't be able to claim an empty slot and a warning will be issued. To fix the issue, for unset() function, we should traverse from the last slot to the first. This way, the above issue can be avoided. The same reverse traversal should also be done in bpf_get_local_storage() helper itself. Otherwise, incorrect local storage may be returned to BPF program. [0] https://github.com/osandov/drgn Fixes: b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210810010413.1976277-1-yhs@fb.com
2021-08-10bpf, devmap: Exclude XDP broadcast to master deviceJussi Maki1-9/+60
If the ingress device is bond slave, do not broadcast back through it or the bond master. Signed-off-by: Jussi Maki <joamaki@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210731055738.16820-5-joamaki@gmail.com
2021-08-09bpf: Add _kernel suffix to internal lockdown_bpf_readDaniel Borkmann1-2/+2
Rename LOCKDOWN_BPF_READ into LOCKDOWN_BPF_READ_KERNEL so we have naming more consistent with a LOCKDOWN_BPF_WRITE_USER option that we are adding. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org>
2021-08-07bpf: Fix integer overflow involving bucket_sizeTatsuhiko Yasumatsu1-2/+2
In __htab_map_lookup_and_delete_batch(), hash buckets are iterated over to count the number of elements in each bucket (bucket_size). If bucket_size is large enough, the multiplication to calculate kvmalloc() size could overflow, resulting in out-of-bounds write as reported by KASAN: [...] [ 104.986052] BUG: KASAN: vmalloc-out-of-bounds in __htab_map_lookup_and_delete_batch+0x5ce/0xb60 [ 104.986489] Write of size 4194224 at addr ffffc9010503be70 by task crash/112 [ 104.986889] [ 104.987193] CPU: 0 PID: 112 Comm: crash Not tainted 5.14.0-rc4 #13 [ 104.987552] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 104.988104] Call Trace: [ 104.988410] dump_stack_lvl+0x34/0x44 [ 104.988706] print_address_description.constprop.0+0x21/0x140 [ 104.988991] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60 [ 104.989327] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60 [ 104.989622] kasan_report.cold+0x7f/0x11b [ 104.989881] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60 [ 104.990239] kasan_check_range+0x17c/0x1e0 [ 104.990467] memcpy+0x39/0x60 [ 104.990670] __htab_map_lookup_and_delete_batch+0x5ce/0xb60 [ 104.990982] ? __wake_up_common+0x4d/0x230 [ 104.991256] ? htab_of_map_free+0x130/0x130 [ 104.991541] bpf_map_do_batch+0x1fb/0x220 [...] In hashtable, if the elements' keys have the same jhash() value, the elements will be put into the same bucket. By putting a lot of elements into a single bucket, the value of bucket_size can be increased to trigger the integer overflow. Triggering the overflow is possible for both callers with CAP_SYS_ADMIN and callers without CAP_SYS_ADMIN. It will be trivial for a caller with CAP_SYS_ADMIN to intentionally reach this overflow by enabling BPF_F_ZERO_SEED. As this flag will set the random seed passed to jhash() to 0, it will be easy for the caller to prepare keys which will be hashed into the same value, and thus put all the elements into the same bucket. If the caller does not have CAP_SYS_ADMIN, BPF_F_ZERO_SEED cannot be used. However, it will be still technically possible to trigger the overflow, by guessing the random seed value passed to jhash() (32bit) and repeating the attempt to trigger the overflow. In this case, the probability to trigger the overflow will be low and will take a very long time. Fix the integer overflow by calling kvmalloc_array() instead of kvmalloc() to allocate memory. Fixes: 057996380a42 ("bpf: Add batch ops to all htab bpf map") Signed-off-by: Tatsuhiko Yasumatsu <th.yasumatsu@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210806150419.109658-1-th.yasumatsu@gmail.com
2021-08-03bpf: Fix off-by-one in tail call count limitingJohan Almbladh1-1/+1
Before, the interpreter allowed up to MAX_TAIL_CALL_CNT + 1 tail calls. Now precisely MAX_TAIL_CALL_CNT is allowed, which is in line with the behavior of the x86 JITs. Signed-off-by: Johan Almbladh <johan.almbladh@anyfinetworks.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210728164741.350370-1-johan.almbladh@anyfinetworks.com
2021-07-31Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextJakub Kicinski4-16/+43
Andrii Nakryiko says: ==================== bpf-next 2021-07-30 We've added 64 non-merge commits during the last 15 day(s) which contain a total of 83 files changed, 5027 insertions(+), 1808 deletions(-). The main changes are: 1) BTF-guided binary data dumping libbpf API, from Alan. 2) Internal factoring out of libbpf CO-RE relocation logic, from Alexei. 3) Ambient BPF run context and cgroup storage cleanup, from Andrii. 4) Few small API additions for libbpf 1.0 effort, from Evgeniy and Hengqi. 5) bpf_program__attach_kprobe_opts() fixes in libbpf, from Jiri. 6) bpf_{get,set}sockopt() support in BPF iterators, from Martin. 7) BPF map pinning improvements in libbpf, from Martynas. 8) Improved module BTF support in libbpf and bpftool, from Quentin. 9) Bpftool cleanups and documentation improvements, from Quentin. 10) Libbpf improvements for supporting CO-RE on old kernels, from Shuyi. 11) Increased maximum cgroup storage size, from Stanislav. 12) Small fixes and improvements to BPF tests and samples, from various folks. * https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (64 commits) tools: bpftool: Complete metrics list in "bpftool prog profile" doc tools: bpftool: Document and add bash completion for -L, -B options selftests/bpf: Update bpftool's consistency script for checking options tools: bpftool: Update and synchronise option list in doc and help msg tools: bpftool: Complete and synchronise attach or map types selftests/bpf: Check consistency between bpftool source, doc, completion tools: bpftool: Slightly ease bash completion updates unix_bpf: Fix a potential deadlock in unix_dgram_bpf_recvmsg() libbpf: Add btf__load_vmlinux_btf/btf__load_module_btf tools: bpftool: Support dumping split BTF by id libbpf: Add split BTF support for btf__load_from_kernel_by_id() tools: Replace btf__get_from_id() with btf__load_from_kernel_by_id() tools: Free BTF objects at various locations libbpf: Rename btf__get_from_id() as btf__load_from_kernel_by_id() libbpf: Rename btf__load() as btf__load_into_kernel() libbpf: Return non-null error on failures in libbpf_find_prog_btf_id() bpf: Emit better log message if bpf_iter ctx arg btf_id == 0 tools/resolve_btfids: Emit warnings and patch zero id for missing symbols bpf: Increase supported cgroup storage value size libbpf: Fix race when pinning maps in parallel ... ==================== Link: https://lore.kernel.org/r/20210730225606.1897330-1-andrii@kernel.org Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-07-31Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski3-107/+76
Conflicting commits, all resolutions pretty trivial: drivers/bus/mhi/pci_generic.c 5c2c85315948 ("bus: mhi: pci-generic: configurable network interface MRU") 56f6f4c4eb2a ("bus: mhi: pci_generic: Apply no-op for wake using sideband wake boolean") drivers/nfc/s3fwrn5/firmware.c a0302ff5906a ("nfc: s3fwrn5: remove unnecessary label") 46573e3ab08f ("nfc: s3fwrn5: fix undefined parameter values in dev_err()") 801e541c79bb ("nfc: s3fwrn5: fix undefined parameter values in dev_err()") MAINTAINERS 7d901a1e878a ("net: phy: add Maxlinear GPY115/21x/24x driver") 8a7b46fa7902 ("MAINTAINERS: add Yasushi SHOJI as reviewer for the Microchip CAN BUS Analyzer Tool driver") Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-07-30bpf: Emit better log message if bpf_iter ctx arg btf_id == 0Yonghong Song1-0/+5
To avoid kernel build failure due to some missing .BTF-ids referenced functions/types, the patch ([1]) tries to fill btf_id 0 for these types. In bpf verifier, for percpu variable and helper returning btf_id cases, verifier already emitted proper warning with something like verbose(env, "Helper has invalid btf_id in R%d\n", regno); verbose(env, "invalid return type %d of func %s#%d\n", fn->ret_type, func_id_name(func_id), func_id); But this is not the case for bpf_iter context arguments. I hacked resolve_btfids to encode btf_id 0 for struct task_struct. With `./test_progs -n 7/5`, I got, 0: (79) r2 = *(u64 *)(r1 +0) func 'bpf_iter_task' arg0 has btf_id 29739 type STRUCT 'bpf_iter_meta' ; struct seq_file *seq = ctx->meta->seq; 1: (79) r6 = *(u64 *)(r2 +0) ; struct task_struct *task = ctx->task; 2: (79) r7 = *(u64 *)(r1 +8) ; if (task == (void *)0) { 3: (55) if r7 != 0x0 goto pc+11 ... ; BPF_SEQ_PRINTF(seq, "%8d %8d\n", task->tgid, task->pid); 26: (61) r1 = *(u32 *)(r7 +1372) Type '(anon)' is not a struct Basically, verifier will return btf_id 0 for task_struct. Later on, when the code tries to access task->tgid, the verifier correctly complains the type is '(anon)' and it is not a struct. Users still need to backtrace to find out what is going on. Let us catch the invalid btf_id 0 earlier and provide better message indicating btf_id is wrong. The new error message looks like below: R1 type=ctx expected=fp ; struct seq_file *seq = ctx->meta->seq; 0: (79) r2 = *(u64 *)(r1 +0) func 'bpf_iter_task' arg0 has btf_id 29739 type STRUCT 'bpf_iter_meta' ; struct seq_file *seq = ctx->meta->seq; 1: (79) r6 = *(u64 *)(r2 +0) ; struct task_struct *task = ctx->task; 2: (79) r7 = *(u64 *)(r1 +8) invalid btf_id for context argument offset 8 invalid bpf_context access off=8 size=8 [1] https://lore.kernel.org/bpf/20210727132532.2473636-1-hengqi.chen@gmail.com/ Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210728183025.1461750-1-yhs@fb.com
2021-07-29bpf: Fix leakage due to insufficient speculative store bypass mitigationDaniel Borkmann1-55/+32
Spectre v4 gadgets make use of memory disambiguation, which is a set of techniques that execute memory access instructions, that is, loads and stores, out of program order; Intel's optimization manual, section 2.4.4.5: A load instruction micro-op may depend on a preceding store. Many microarchitectures block loads until all preceding store addresses are known. The memory disambiguator predicts which loads will not depend on any previous stores. When the disambiguator predicts that a load does not have such a dependency, the load takes its data from the L1 data cache. Eventually, the prediction is verified. If an actual conflict is detected, the load and all succeeding instructions are re-executed. af86ca4e3088 ("bpf: Prevent memory disambiguation attack") tried to mitigate this attack by sanitizing the memory locations through preemptive "fast" (low latency) stores of zero prior to the actual "slow" (high latency) store of a pointer value such that upon dependency misprediction the CPU then speculatively executes the load of the pointer value and retrieves the zero value instead of the attacker controlled scalar value previously stored at that location, meaning, subsequent access in the speculative domain is then redirected to the "zero page". The sanitized preemptive store of zero prior to the actual "slow" store is done through a simple ST instruction based on r10 (frame pointer) with relative offset to the stack location that the verifier has been tracking on the original used register for STX, which does not have to be r10. Thus, there are no memory dependencies for this store, since it's only using r10 and immediate constant of zero; hence af86ca4e3088 /assumed/ a low latency operation. However, a recent attack demonstrated that this mitigation is not sufficient since the preemptive store of zero could also be turned into a "slow" store and is thus bypassed as well: [...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value 31: (7b) *(u64 *)(r10 -16) = r2 // r9 will remain "fast" register, r10 will become "slow" register below 32: (bf) r9 = r10 // JIT maps BPF reg to x86 reg: // r9 -> r15 (callee saved) // r10 -> rbp // train store forward prediction to break dependency link between both r9 // and r10 by evicting them from the predictor's LRU table. 33: (61) r0 = *(u32 *)(r7 +24576) 34: (63) *(u32 *)(r7 +29696) = r0 35: (61) r0 = *(u32 *)(r7 +24580) 36: (63) *(u32 *)(r7 +29700) = r0 37: (61) r0 = *(u32 *)(r7 +24584) 38: (63) *(u32 *)(r7 +29704) = r0 39: (61) r0 = *(u32 *)(r7 +24588) 40: (63) *(u32 *)(r7 +29708) = r0 [...] 543: (61) r0 = *(u32 *)(r7 +25596) 544: (63) *(u32 *)(r7 +30716) = r0 // prepare call to bpf_ringbuf_output() helper. the latter will cause rbp // to spill to stack memory while r13/r14/r15 (all callee saved regs) remain // in hardware registers. rbp becomes slow due to push/pop latency. below is // disasm of bpf_ringbuf_output() helper for better visual context: // // ffffffff8117ee20: 41 54 push r12 // ffffffff8117ee22: 55 push rbp // ffffffff8117ee23: 53 push rbx // ffffffff8117ee24: 48 f7 c1 fc ff ff ff test rcx,0xfffffffffffffffc // ffffffff8117ee2b: 0f 85 af 00 00 00 jne ffffffff8117eee0 <-- jump taken // [...] // ffffffff8117eee0: 49 c7 c4 ea ff ff ff mov r12,0xffffffffffffffea // ffffffff8117eee7: 5b pop rbx // ffffffff8117eee8: 5d pop rbp // ffffffff8117eee9: 4c 89 e0 mov rax,r12 // ffffffff8117eeec: 41 5c pop r12 // ffffffff8117eeee: c3 ret 545: (18) r1 = map[id:4] 547: (bf) r2 = r7 548: (b7) r3 = 0 549: (b7) r4 = 4 550: (85) call bpf_ringbuf_output#194288 // instruction 551 inserted by verifier \ 551: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here // storing map value pointer r7 at fp-16 | since value of r10 is "slow". 552: (7b) *(u64 *)(r10 -16) = r7 / // following "fast" read to the same memory location, but due to dependency // misprediction it will speculatively execute before insn 551/552 completes. 553: (79) r2 = *(u64 *)(r9 -16) // in speculative domain contains attacker controlled r2. in non-speculative // domain this contains r7, and thus accesses r7 +0 below. 554: (71) r3 = *(u8 *)(r2 +0) // leak r3 As can be seen, the current speculative store bypass mitigation which the verifier inserts at line 551 is insufficient since /both/, the write of the zero sanitation as well as the map value pointer are a high latency instruction due to prior memory access via push/pop of r10 (rbp) in contrast to the low latency read in line 553 as r9 (r15) which stays in hardware registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally, fp-16 can still be r2. Initial thoughts to address this issue was to track spilled pointer loads from stack and enforce their load via LDX through r10 as well so that /both/ the preemptive store of zero /as well as/ the load use the /same/ register such that a dependency is created between the store and load. However, this option is not sufficient either since it can be bypassed as well under speculation. An updated attack with pointer spill/fills now _all_ based on r10 would look as follows: [...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value [...] // longer store forward prediction training sequence than before. 2062: (61) r0 = *(u32 *)(r7 +25588) 2063: (63) *(u32 *)(r7 +30708) = r0 2064: (61) r0 = *(u32 *)(r7 +25592) 2065: (63) *(u32 *)(r7 +30712) = r0 2066: (61) r0 = *(u32 *)(r7 +25596) 2067: (63) *(u32 *)(r7 +30716) = r0 // store the speculative load address (scalar) this time after the store // forward prediction training. 2068: (7b) *(u64 *)(r10 -16) = r2 // preoccupy the CPU store port by running sequence of dummy stores. 2069: (63) *(u32 *)(r7 +29696) = r0 2070: (63) *(u32 *)(r7 +29700) = r0 2071: (63) *(u32 *)(r7 +29704) = r0 2072: (63) *(u32 *)(r7 +29708) = r0 2073: (63) *(u32 *)(r7 +29712) = r0 2074: (63) *(u32 *)(r7 +29716) = r0 2075: (63) *(u32 *)(r7 +29720) = r0 2076: (63) *(u32 *)(r7 +29724) = r0 2077: (63) *(u32 *)(r7 +29728) = r0 2078: (63) *(u32 *)(r7 +29732) = r0 2079: (63) *(u32 *)(r7 +29736) = r0 2080: (63) *(u32 *)(r7 +29740) = r0 2081: (63) *(u32 *)(r7 +29744) = r0 2082: (63) *(u32 *)(r7 +29748) = r0 2083: (63) *(u32 *)(r7 +29752) = r0 2084: (63) *(u32 *)(r7 +29756) = r0 2085: (63) *(u32 *)(r7 +29760) = r0 2086: (63) *(u32 *)(r7 +29764) = r0 2087: (63) *(u32 *)(r7 +29768) = r0 2088: (63) *(u32 *)(r7 +29772) = r0 2089: (63) *(u32 *)(r7 +29776) = r0 2090: (63) *(u32 *)(r7 +29780) = r0 2091: (63) *(u32 *)(r7 +29784) = r0 2092: (63) *(u32 *)(r7 +29788) = r0 2093: (63) *(u32 *)(r7 +29792) = r0 2094: (63) *(u32 *)(r7 +29796) = r0 2095: (63) *(u32 *)(r7 +29800) = r0 2096: (63) *(u32 *)(r7 +29804) = r0 2097: (63) *(u32 *)(r7 +29808) = r0 2098: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; same as before, also including the // sanitation store with 0 from the current mitigation by the verifier. 2099: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here 2100: (7b) *(u64 *)(r10 -16) = r7 | since store unit is still busy. // load from stack intended to bypass stores. 2101: (79) r2 = *(u64 *)(r10 -16) 2102: (71) r3 = *(u8 *)(r2 +0) // leak r3 [...] Looking at the CPU microarchitecture, the scheduler might issue loads (such as seen in line 2101) before stores (line 2099,2100) because the load execution units become available while the store execution unit is still busy with the sequence of dummy stores (line 2069-2098). And so the load may use the prior stored scalar from r2 at address r10 -16 for speculation. The updated attack may work less reliable on CPU microarchitectures where loads and stores share execution resources. This concludes that the sanitizing with zero stores from af86ca4e3088 ("bpf: Prevent memory disambiguation attack") is insufficient. Moreover, the detection of stack reuse from af86ca4e3088 where previously data (STACK_MISC) has been written to a given stack slot where a pointer value is now to be stored does not have sufficient coverage as precondition for the mitigation either; for several reasons outlined as follows: 1) Stack content from prior program runs could still be preserved and is therefore not "random", best example is to split a speculative store bypass attack between tail calls, program A would prepare and store the oob address at a given stack slot and then tail call into program B which does the "slow" store of a pointer to the stack with subsequent "fast" read. From program B PoV such stack slot type is STACK_INVALID, and therefore also must be subject to mitigation. 2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr) condition, for example, the previous content of that memory location could also be a pointer to map or map value. Without the fix, a speculative store bypass is not mitigated in such precondition and can then lead to a type confusion in the speculative domain leaking kernel memory near these pointer types. While brainstorming on various alternative mitigation possibilities, we also stumbled upon a retrospective from Chrome developers [0]: [...] For variant 4, we implemented a mitigation to zero the unused memory of the heap prior to allocation, which cost about 1% when done concurrently and 4% for scavenging. Variant 4 defeats everything we could think of. We explored more mitigations for variant 4 but the threat proved to be more pervasive and dangerous than we anticipated. For example, stack slots used by the register allocator in the optimizing compiler could be subject to type confusion, leading to pointer crafting. Mitigating type confusion for stack slots alone would have required a complete redesign of the backend of the optimizing compiler, perhaps man years of work, without a guarantee of completeness. [...] From BPF side, the problem space is reduced, however, options are rather limited. One idea that has been explored was to xor-obfuscate pointer spills to the BPF stack: [...] // preoccupy the CPU store port by running sequence of dummy stores. [...] 2106: (63) *(u32 *)(r7 +29796) = r0 2107: (63) *(u32 *)(r7 +29800) = r0 2108: (63) *(u32 *)(r7 +29804) = r0 2109: (63) *(u32 *)(r7 +29808) = r0 2110: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; xored with random 'secret' value // of 943576462 before store ... 2111: (b4) w11 = 943576462 2112: (af) r11 ^= r7 2113: (7b) *(u64 *)(r10 -16) = r11 2114: (79) r11 = *(u64 *)(r10 -16) 2115: (b4) w2 = 943576462 2116: (af) r2 ^= r11 // ... and restored with the same 'secret' value with the help of AX reg. 2117: (71) r3 = *(u8 *)(r2 +0) [...] While the above would not prevent speculation, it would make data leakage infeasible by directing it to random locations. In order to be effective and prevent type confusion under speculation, such random secret would have to be regenerated for each store. The additional complexity involved for a tracking mechanism that prevents jumps such that restoring spilled pointers would not get corrupted is not worth the gain for unprivileged. Hence, the fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC instruction which the x86 JIT translates into a lfence opcode. Inserting the latter in between the store and load instruction is one of the mitigations options [1]. The x86 instruction manual notes: [...] An LFENCE that follows an instruction that stores to memory might complete before the data being stored have become globally visible. [...] The latter meaning that the preceding store instruction finished execution and the store is at minimum guaranteed to be in the CPU's store queue, but it's not guaranteed to be in that CPU's L1 cache at that point (globally visible). The latter would only be guaranteed via sfence. So the load which is guaranteed to execute after the lfence for that local CPU would have to rely on store-to-load forwarding. [2], in section 2.3 on store buffers says: [...] For every store operation that is added to the ROB, an entry is allocated in the store buffer. This entry requires both the virtual and physical address of the target. Only if there is no free entry in the store buffer, the frontend stalls until there is an empty slot available in the store buffer again. Otherwise, the CPU can immediately continue adding subsequent instructions to the ROB and execute them out of order. On Intel CPUs, the store buffer has up to 56 entries. [...] One small upside on the fix is that it lifts constraints from af86ca4e3088 where the sanitize_stack_off relative to r10 must be the same when coming from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX or BPF_ST instruction. This happens either when we store a pointer or data value to the BPF stack for the first time, or upon later pointer spills. The former needs to be enforced since otherwise stale stack data could be leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST | BPF_NOSPEC mapping is currently optimized away, but others could emit a speculation barrier as well if necessary. For real-world unprivileged programs e.g. generated by LLVM, pointer spill/fill is only generated upon register pressure and LLVM only tries to do that for pointers which are not used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC sanitation for the STACK_INVALID case when the first write to a stack slot occurs e.g. upon map lookup. In future we might refine ways to mitigate the latter cost. [0] https://arxiv.org/pdf/1902.05178.pdf [1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/ [2] https://arxiv.org/pdf/1905.05725.pdf Fixes: af86ca4e3088 ("bpf: Prevent memory disambiguation attack") Fixes: f7cf25b2026d ("bpf: track spill/fill of constants") Co-developed-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-29bpf: Introduce BPF nospec instruction for mitigating Spectre v4Daniel Borkmann2-8/+27
In case of JITs, each of the JIT backends compiles the BPF nospec instruction /either/ to a machine instruction which emits a speculation barrier /or/ to /no/ machine instruction in case the underlying architecture is not affected by Speculative Store Bypass or has different mitigations in place already. This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence' instruction for mitigation. In case of arm64, we rely on the firmware mitigation as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled, it works for all of the kernel code with no need to provide any additional instructions here (hence only comment in arm64 JIT). Other archs can follow as needed. The BPF nospec instruction is specifically targeting Spectre v4 since i) we don't use a serialization barrier for the Spectre v1 case, and ii) mitigation instructions for v1 and v4 might be different on some archs. The BPF nospec is required for a future commit, where the BPF verifier does annotate intermediate BPF programs with speculation barriers. Co-developed-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-28bpf: Increase supported cgroup storage value sizeStanislav Fomichev1-1/+10
Current max cgroup storage value size is 4k (PAGE_SIZE). The other local storages accept up to 64k (BPF_LOCAL_STORAGE_MAX_VALUE_SIZE). Let's align max cgroup value size with the other storages. For percpu, the max is 32k (PCPU_MIN_UNIT_SIZE) because percpu allocator is not happy about larger values. netcnt test is extended to exercise those maximum values (non-percpu max size is close to, but not real max). v4: * remove inner union (Andrii Nakryiko) * keep net_cnt on the stack (Andrii Nakryiko) v3: * refine SIZEOF_BPF_LOCAL_STORAGE_ELEM comment (Yonghong Song) * anonymous struct in percpu_net_cnt & net_cnt (Yonghong Song) * reorder free (Yonghong Song) v2: * cap max_value_size instead of BUILD_BUG_ON (Martin KaFai Lau) Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210727222335.4029096-1-sdf@google.com
2021-07-24bpf: tcp: Support bpf_(get|set)sockopt in bpf tcp iterMartin KaFai Lau1-0/+22
This patch allows bpf tcp iter to call bpf_(get|set)sockopt. To allow a specific bpf iter (tcp here) to call a set of helpers, get_func_proto function pointer is added to bpf_iter_reg. The bpf iter is a tracing prog which currently requires CAP_PERFMON or CAP_SYS_ADMIN, so this patch does not impose other capability checks for bpf_(get|set)sockopt. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210701200619.1036715-1-kafai@fb.com
2021-07-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netDavid S. Miller1-0/+2
Conflicts are simple overlapping changes. Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-23bpf: Remove redundant intiialization of variable stypeColin Ian King1-1/+1
The variable stype is being initialized with a value that is never read, it is being updated later on. The assignment is redundant and can be removed. Addresses-Coverity: ("Unused value") Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210721115630.109279-1-colin.king@canonical.com
2021-07-16bpf: Add ambient BPF runtime context stored in currentAndrii Nakryiko2-14/+5
b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") fixed the problem with cgroup-local storage use in BPF by pre-allocating per-CPU array of 8 cgroup storage pointers to accommodate possible BPF program preemptions and nested executions. While this seems to work good in practice, it introduces new and unnecessary failure mode in which not all BPF programs might be executed if we fail to find an unused slot for cgroup storage, however unlikely it is. It might also not be so unlikely when/if we allow sleepable cgroup BPF programs in the future. Further, the way that cgroup storage is implemented as ambiently-available property during entire BPF program execution is a convenient way to pass extra information to BPF program and helpers without requiring user code to pass around extra arguments explicitly. So it would be good to have a generic solution that can allow implementing this without arbitrary restrictions. Ideally, such solution would work for both preemptable and sleepable BPF programs in exactly the same way. This patch introduces such solution, bpf_run_ctx. It adds one pointer field (bpf_ctx) to task_struct. This field is maintained by BPF_PROG_RUN family of macros in such a way that it always stays valid throughout BPF program execution. BPF program preemption is handled by remembering previous current->bpf_ctx value locally while executing nested BPF program and restoring old value after nested BPF program finishes. This is handled by two helper functions, bpf_set_run_ctx() and bpf_reset_run_ctx(), which are supposed to be used before and after BPF program runs, respectively. Restoring old value of the pointer handles preemption, while bpf_run_ctx pointer being a property of current task_struct naturally solves this problem for sleepable BPF programs by "following" BPF program execution as it is scheduled in and out of CPU. It would even allow CPU migration of BPF programs, even though it's not currently allowed by BPF infra. This patch cleans up cgroup local storage handling as a first application. The design itself is generic, though, with bpf_run_ctx being an empty struct that is supposed to be embedded into a specific struct for a given BPF program type (bpf_cg_run_ctx in this case). Follow up patches are planned that will expand this mechanism for other uses within tracing BPF programs. To verify that this change doesn't revert the fix to the original cgroup storage issue, I ran the same repro as in the original report ([0]) and didn't get any problems. Replacing bpf_reset_run_ctx(old_run_ctx) with bpf_reset_run_ctx(NULL) triggers the issue pretty quickly (so repro does work). [0] https://lore.kernel.org/bpf/YEEvBUiJl2pJkxTd@krava/ Fixes: b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210712230615.3525979-1-andrii@kernel.org
2021-07-16bpf: Fix pointer arithmetic mask tightening under state pruningDaniel Borkmann1-10/+17
In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we narrowed the offset mask for unprivileged pointer arithmetic in order to mitigate a corner case where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of- bounds in order to leak kernel memory via side-channel to user space. The verifier's state pruning for scalars leaves one corner case open where in the first verification path R_x holds an unknown scalar with an aux->alu_limit of e.g. 7, and in a second verification path that same register R_x, here denoted as R_x', holds an unknown scalar which has tighter bounds and would thus satisfy range_within(R_x, R_x') as well as tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3: Given the second path fits the register constraints for pruning, the final generated mask from aux->alu_limit will remain at 7. While technically not wrong for the non-speculative domain, it would however be possible to craft similar cases where the mask would be too wide as in 7fedb63a8307. One way to fix it is to detect the presence of unknown scalar map pointer arithmetic and force a deeper search on unknown scalars to ensure that we do not run into a masking mismatch. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-16bpf: Remove superfluous aux sanitation on subprog rejectionDaniel Borkmann1-34/+0
Follow-up to fe9a5ca7e370 ("bpf: Do not mark insn as seen under speculative path verification"). The sanitize_insn_aux_data() helper does not serve a particular purpose in today's code. The original intention for the helper was that if function-by-function verification fails, a given program would be cleared from temporary insn_aux_data[], and then its verification would be re-attempted in the context of the main program a second time. However, a failure in do_check_subprogs() will skip do_check_main() and propagate the error to the user instead, thus such situation can never occur. Given its interaction is not compatible to the Spectre v1 mitigation (due to comparing aux->seen with env->pass_cnt), just remove sanitize_insn_aux_data() to avoid future bugs in this area. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-16Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextDavid S. Miller12-93/+1073
Alexei Starovoitov says: ==================== pull-request: bpf-next 2021-07-15 The following pull-request contains BPF updates for your *net-next* tree. We've added 45 non-merge commits during the last 15 day(s) which contain a total of 52 files changed, 3122 insertions(+), 384 deletions(-). The main changes are: 1) Introduce bpf timers, from Alexei. 2) Add sockmap support for unix datagram socket, from Cong. 3) Fix potential memleak and UAF in the verifier, from He. 4) Add bpf_get_func_ip helper, from Jiri. 5) Improvements to generic XDP mode, from Kumar. 6) Support for passing xdp_md to XDP programs in bpf_prog_run, from Zvi. =================== Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-16sock_map: Relax config dependency to CONFIG_NETCong Wang1-1/+1
Currently sock_map still has Kconfig dependency on CONFIG_INET, but there is no actual functional dependency on it after we introduce ->psock_update_sk_prot(). We have to extend it to CONFIG_NET now as we are going to support AF_UNIX. Signed-off-by: Cong Wang <cong.wang@bytedance.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210704190252.11866-2-xiyou.wangcong@gmail.com
2021-07-16bpf: Add bpf_get_func_ip helper for kprobe programsJiri Olsa1-0/+2
Adding bpf_get_func_ip helper for BPF_PROG_TYPE_KPROBE programs, so it's now possible to call bpf_get_func_ip from both kprobe and kretprobe programs. Taking the caller's address from 'struct kprobe::addr', which is defined for both kprobe and kretprobe. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Link: https://lore.kernel.org/bpf/20210714094400.396467-5-jolsa@kernel.org
2021-07-16bpf: Add bpf_get_func_ip helper for tracing programsJiri Olsa1-0/+43
Adding bpf_get_func_ip helper for BPF_PROG_TYPE_TRACING programs, specifically for all trampoline attach types. The trampoline's caller IP address is stored in (ctx - 8) address. so there's no reason to actually call the helper, but rather fixup the call instruction and return [ctx - 8] value directly. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210714094400.396467-4-jolsa@kernel.org
2021-07-16bpf: Enable BPF_TRAMP_F_IP_ARG for trampolines with call_get_func_ipJiri Olsa1-3/+9
Enabling BPF_TRAMP_F_IP_ARG for trampolines that actually need it. The BPF_TRAMP_F_IP_ARG adds extra 3 instructions to trampoline code and is used only by programs with bpf_get_func_ip helper, which is added in following patch and sets call_get_func_ip bit. This patch ensures that BPF_TRAMP_F_IP_ARG flag is used only for trampolines that have programs with call_get_func_ip set. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210714094400.396467-3-jolsa@kernel.org
2021-07-15bpf: Teach stack depth check about async callbacks.Alexei Starovoitov1-3/+15
Teach max stack depth checking algorithm about async callbacks that don't increase bpf program stack size. Also add sanity check that bpf_tail_call didn't sneak into async cb. It's impossible, since PTR_TO_CTX is not available in async cb, hence the program cannot contain bpf_tail_call(ctx,...); Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-10-alexei.starovoitov@gmail.com
2021-07-15bpf: Implement verifier support for validation of async callbacks.Alexei Starovoitov2-8/+123
bpf_for_each_map_elem() and bpf_timer_set_callback() helpers are relying on PTR_TO_FUNC infra in the verifier to validate addresses to subprograms and pass them into the helpers as function callbacks. In case of bpf_for_each_map_elem() the callback is invoked synchronously and the verifier treats it as a normal subprogram call by adding another bpf_func_state and new frame in __check_func_call(). bpf_timer_set_callback() doesn't invoke the callback directly. The subprogram will be called asynchronously from bpf_timer_cb(). Teach the verifier to validate such async callbacks as special kind of jump by pushing verifier state into stack and let pop_stack() process it. Special care needs to be taken during state pruning. The call insn doing bpf_timer_set_callback has to be a prune_point. Otherwise short timer callbacks might not have prune points in front of bpf_timer_set_callback() which means is_state_visited() will be called after this call insn is processed in __check_func_call(). Which means that another async_cb state will be pushed to be walked later and the verifier will eventually hit BPF_COMPLEXITY_LIMIT_JMP_SEQ limit. Since push_async_cb() looks like another push_stack() branch the infinite loop detection will trigger false positive. To recognize this case mark such states as in_async_callback_fn. To distinguish infinite loop in async callback vs the same callback called with different arguments for different map and timer add async_entry_cnt to bpf_func_state. Enforce return zero from async callbacks. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-9-alexei.starovoitov@gmail.com
2021-07-15bpf: Relax verifier recursion check.Alexei Starovoitov1-2/+6
In the following bpf subprogram: static int timer_cb(void *map, void *key, void *value) { bpf_timer_set_callback(.., timer_cb); } the 'timer_cb' is a pointer to a function. ld_imm64 insn is used to carry this pointer. bpf_pseudo_func() returns true for such ld_imm64 insn. Unlike bpf_for_each_map_elem() the bpf_timer_set_callback() is asynchronous. Relax control flow check to allow such "recursion" that is seen as an infinite loop by check_cfg(). The distinction between bpf_for_each_map_elem() the bpf_timer_set_callback() is done in the follow up patch. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-8-alexei.starovoitov@gmail.com
2021-07-15bpf: Remember BTF of inner maps.Alexei Starovoitov1-0/+6
BTF is required for 'struct bpf_timer' to be recognized inside map value. The bpf timers are supported inside inner maps. Remember 'struct btf *' in inner_map_meta to make it available to the verifier in the sequence: struct bpf_map *inner_map = bpf_map_lookup_elem(&outer_map, ...); if (inner_map) timer = bpf_map_lookup_elem(&inner_map, ...); Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-7-alexei.starovoitov@gmail.com
2021-07-15bpf: Prevent pointer mismatch in bpf_timer_init.Alexei Starovoitov1-3/+28
bpf_timer_init() arguments are: 1. pointer to a timer (which is embedded in map element). 2. pointer to a map. Make sure that pointer to a timer actually belongs to that map. Use map_uid (which is unique id of inner map) to reject: inner_map1 = bpf_map_lookup_elem(outer_map, key1) inner_map2 = bpf_map_lookup_elem(outer_map, key2) if (inner_map1 && inner_map2) { timer = bpf_map_lookup_elem(inner_map1); if (timer) // mismatch would have been allowed bpf_timer_init(timer, inner_map2); } Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-6-alexei.starovoitov@gmail.com
2021-07-15bpf: Add map side support for bpf timers.Alexei Starovoitov7-35/+225
Restrict bpf timers to array, hash (both preallocated and kmalloced), and lru map types. The per-cpu maps with timers don't make sense, since 'struct bpf_timer' is a part of map value. bpf timers in per-cpu maps would mean that the number of timers depends on number of possible cpus and timers would not be accessible from all cpus. lpm map support can be added in the future. The timers in inner maps are supported. The bpf_map_update/delete_elem() helpers and sys_bpf commands cancel and free bpf_timer in a given map element. Similar to 'struct bpf_spin_lock' BTF is required and it is used to validate that map element indeed contains 'struct bpf_timer'. Make check_and_init_map_value() init both bpf_spin_lock and bpf_timer when map element data is reused in preallocated htab and lru maps. Teach copy_map_value() to support both bpf_spin_lock and bpf_timer in a single map element. There could be one of each, but not more than one. Due to 'one bpf_timer in one element' restriction do not support timers in global data, since global data is a map of single element, but from bpf program side it's seen as many global variables and restriction of single global timer would be odd. The sys_bpf map_freeze and sys_mmap syscalls are not allowed on maps with timers, since user space could have corrupted mmap element and crashed the kernel. The maps with timers cannot be readonly. Due to these restrictions search for bpf_timer in datasec BTF in case it was placed in the global data to report clear error. The previous patch allowed 'struct bpf_timer' as a first field in a map element only. Relax this restriction. Refactor lru map to s/bpf_lru_push_free/htab_lru_push_free/ to cancel and free the timer when lru map deletes an element as a part of it eviction algorithm. Make sure that bpf program cannot access 'struct bpf_timer' via direct load/store. The timer operation are done through helpers only. This is similar to 'struct bpf_spin_lock'. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-5-alexei.starovoitov@gmail.com
2021-07-15bpf: Introduce bpf timers.Alexei Starovoitov2-0/+433
Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded in hash/array/lru maps as a regular field and helpers to operate on it: // Initialize the timer. // First 4 bits of 'flags' specify clockid. // Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed. long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags); // Configure the timer to call 'callback_fn' static function. long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); // Arm the timer to expire 'nsec' nanoseconds from the current time. long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags); // Cancel the timer and wait for callback_fn to finish if it was running. long bpf_timer_cancel(struct bpf_timer *timer); Here is how BPF program might look like: struct map_elem { int counter; struct bpf_timer timer; }; struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(max_entries, 1000); __type(key, int); __type(value, struct map_elem); } hmap SEC(".maps"); static int timer_cb(void *map, int *key, struct map_elem *val); /* val points to particular map element that contains bpf_timer. */ SEC("fentry/bpf_fentry_test1") int BPF_PROG(test1, int a) { struct map_elem *val; int key = 0; val = bpf_map_lookup_elem(&hmap, &key); if (val) { bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME); bpf_timer_set_callback(&val->timer, timer_cb); bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0); } } This patch adds helper implementations that rely on hrtimers to call bpf functions as timers expire. The following patches add necessary safety checks. Only programs with CAP_BPF are allowed to use bpf_timer. The amount of timers used by the program is constrained by the memcg recorded at map creation time. The bpf_timer_init() helper needs explicit 'map' argument because inner maps are dynamic and not known at load time. While the bpf_timer_set_callback() is receiving hidden 'aux->prog' argument supplied by the verifier. The prog pointer is needed to do refcnting of bpf program to make sure that program doesn't get freed while the timer is armed. This approach relies on "user refcnt" scheme used in prog_array that stores bpf programs for bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is paired with bpf_timer_cancel() that will drop the prog refcnt. The ops->map_release_uref is responsible for cancelling the timers and dropping prog refcnt when user space reference to a map reaches zero. This uref approach is done to make sure that Ctrl-C of user space process will not leave timers running forever unless the user space explicitly pinned a map that contained timers in bpffs. bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't have user references (is not held by open file descriptor from user space and not pinned in bpffs). The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel and free the timer if given map element had it allocated. "bpftool map update" command can be used to cancel timers. The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because '__u64 :64' has 1 byte alignment of 8 byte padding. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com
2021-07-15bpf: Factor out bpf_spin_lock into helpers.Alexei Starovoitov1-4/+14
Move ____bpf_spin_lock/unlock into helpers to make it more clear that quadruple underscore bpf_spin_lock/unlock are irqsave/restore variants. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-3-alexei.starovoitov@gmail.com
2021-07-15bpf: Prepare bpf_prog_put() to be called from irq context.Alexei Starovoitov1-6/+26
Currently bpf_prog_put() is called from the task context only. With addition of bpf timers the timer related helpers will start calling bpf_prog_put() from irq-saved region and in rare cases might drop the refcnt to zero. To address this case, first, convert bpf_prog_free_id() to be irq-save (this is similar to bpf_map_free_id), and, second, defer non irq appropriate calls into work queue. For example: bpf_audit_prog() is calling kmalloc and wake_up_interruptible, bpf_prog_kallsyms_del_all()->bpf_ksym_del()->spin_unlock_bh(). They are not safe with irqs disabled. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-2-alexei.starovoitov@gmail.com
2021-07-15bpf: Fix potential memleak and UAF in the verifier.He Fengqing1-11/+16
In bpf_patch_insn_data(), we first use the bpf_patch_insn_single() to insert new instructions, then use adjust_insn_aux_data() to adjust insn_aux_data. If the old env->prog have no enough room for new inserted instructions, we use bpf_prog_realloc to construct new_prog and free the old env->prog. There have two errors here. First, if adjust_insn_aux_data() return ENOMEM, we should free the new_prog. Second, if adjust_insn_aux_data() return ENOMEM, bpf_patch_insn_data() will return NULL, and env->prog has been freed in bpf_prog_realloc, but we will use it in bpf_check(). So in this patch, we make the adjust_insn_aux_data() never fails. In bpf_patch_insn_data(), we first pre-malloc memory for the new insn_aux_data, then call bpf_patch_insn_single() to insert new instructions, at last call adjust_insn_aux_data() to adjust insn_aux_data. Fixes: 8041902dae52 ("bpf: adjust insn_aux_data when patching insns") Signed-off-by: He Fengqing <hefengqing@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210714101815.164322-1-hefengqing@huawei.com
2021-07-13bpf: Fix tail_call_reachable rejection for interpreter when jit failedDaniel Borkmann1-0/+2
During testing of f263a81451c1 ("bpf: Track subprog poke descriptors correctly and fix use-after-free") under various failure conditions, for example, when jit_subprogs() fails and tries to clean up the program to be run under the interpreter, we ran into the following freeze: [...] #127/8 tailcall_bpf2bpf_3:FAIL [...] [ 92.041251] BUG: KASAN: slab-out-of-bounds in ___bpf_prog_run+0x1b9d/0x2e20 [ 92.042408] Read of size 8 at addr ffff88800da67f68 by task test_progs/682 [ 92.043707] [ 92.044030] CPU: 1 PID: 682 Comm: test_progs Tainted: G O 5.13.0-53301-ge6c08cb33a30-dirty #87 [ 92.045542] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 [ 92.046785] Call Trace: [ 92.047171] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.047773] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.048389] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.049019] ? ktime_get+0x117/0x130 [...] // few hundred [similar] lines more [ 92.659025] ? ktime_get+0x117/0x130 [ 92.659845] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.660738] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.661528] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.662378] ? print_usage_bug+0x50/0x50 [ 92.663221] ? print_usage_bug+0x50/0x50 [ 92.664077] ? bpf_ksym_find+0x9c/0xe0 [ 92.664887] ? ktime_get+0x117/0x130 [ 92.665624] ? kernel_text_address+0xf5/0x100 [ 92.666529] ? __kernel_text_address+0xe/0x30 [ 92.667725] ? unwind_get_return_address+0x2f/0x50 [ 92.668854] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.670185] ? ktime_get+0x117/0x130 [ 92.671130] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.672020] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.672860] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.675159] ? ktime_get+0x117/0x130 [ 92.677074] ? lock_is_held_type+0xd5/0x130 [ 92.678662] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.680046] ? ktime_get+0x117/0x130 [ 92.681285] ? __bpf_prog_run32+0x6b/0x90 [ 92.682601] ? __bpf_prog_run64+0x90/0x90 [ 92.683636] ? lock_downgrade+0x370/0x370 [ 92.684647] ? mark_held_locks+0x44/0x90 [ 92.685652] ? ktime_get+0x117/0x130 [ 92.686752] ? lockdep_hardirqs_on+0x79/0x100 [ 92.688004] ? ktime_get+0x117/0x130 [ 92.688573] ? __cant_migrate+0x2b/0x80 [ 92.689192] ? bpf_test_run+0x2f4/0x510 [ 92.689869] ? bpf_test_timer_continue+0x1c0/0x1c0 [ 92.690856] ? rcu_read_lock_bh_held+0x90/0x90 [ 92.691506] ? __kasan_slab_alloc+0x61/0x80 [ 92.692128] ? eth_type_trans+0x128/0x240 [ 92.692737] ? __build_skb+0x46/0x50 [ 92.693252] ? bpf_prog_test_run_skb+0x65e/0xc50 [ 92.693954] ? bpf_prog_test_run_raw_tp+0x2d0/0x2d0 [ 92.694639] ? __fget_light+0xa1/0x100 [ 92.695162] ? bpf_prog_inc+0x23/0x30 [ 92.695685] ? __sys_bpf+0xb40/0x2c80 [ 92.696324] ? bpf_link_get_from_fd+0x90/0x90 [ 92.697150] ? mark_held_locks+0x24/0x90 [ 92.698007] ? lockdep_hardirqs_on_prepare+0x124/0x220 [ 92.699045] ? finish_task_switch+0xe6/0x370 [ 92.700072] ? lockdep_hardirqs_on+0x79/0x100 [ 92.701233] ? finish_task_switch+0x11d/0x370 [ 92.702264] ? __switch_to+0x2c0/0x740 [ 92.703148] ? mark_held_locks+0x24/0x90 [ 92.704155] ? __x64_sys_bpf+0x45/0x50 [ 92.705146] ? do_syscall_64+0x35/0x80 [ 92.706953] ? entry_SYSCALL_64_after_hwframe+0x44/0xae [...] Turns out that the program rejection from e411901c0b77 ("bpf: allow for tailcalls in BPF subprograms for x64 JIT") is buggy since env->prog->aux->tail_call_reachable is never true. Commit ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT") added a tracker into check_max_stack_depth() which propagates the tail_call_reachable condition throughout the subprograms. This info is then assigned to the subprogram's func[i]->aux->tail_call_reachable. However, in the case of the rejection check upon JIT failure, env->prog->aux->tail_call_reachable is used. func[0]->aux->tail_call_reachable which represents the main program's information did not propagate this to the outer env->prog->aux, though. Add this propagation into check_max_stack_depth() where it needs to belong so that the check can be done reliably. Fixes: ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT") Fixes: e411901c0b77 ("bpf: allow for tailcalls in BPF subprograms for x64 JIT") Co-developed-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Link: https://lore.kernel.org/bpf/618c34e3163ad1a36b1e82377576a6081e182f25.1626123173.git.daniel@iogearbox.net
2021-07-09bpf: Track subprog poke descriptors correctly and fix use-after-freeJohn Fastabend2-40/+28
Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run(): [...] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 [...] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; [...] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { [...] /* --- cacheline 5 boundary (320 bytes) --- */ u32 size_poke_tab; /* 320 4 */ [...] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don't try to double free the poke_tab when free'ing the subprog structures. This is easily solved by NULL'ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, a748c6975dea3 ("bpf: propagate poke descriptors to subprograms") had an off-by-one on the subprogram instruction index range check as it was testing 'insn_idx >= subprog_start && insn_idx <= subprog_end'. However, subprog_end is the next subprogram's start instruction. Fixes: a748c6975dea3 ("bpf: propagate poke descriptors to subprograms") Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210707223848.14580-2-john.fastabend@gmail.com
2021-07-08bpf: devmap: Implement devmap prog execution for generic XDPKumar Kartikeya Dwivedi1-10/+39
This lifts the restriction on running devmap BPF progs in generic redirect mode. To match native XDP behavior, it is invoked right before generic_xdp_tx is called, and only supports XDP_PASS/XDP_ABORTED/ XDP_DROP actions. We also return 0 even if devmap program drops the packet, as semantically redirect has already succeeded and the devmap prog is the last point before TX of the packet to device where it can deliver a verdict on the packet. This also means it must take care of freeing the skb, as xdp_do_generic_redirect callers only do that in case an error is returned. Since devmap entry prog is supported, remove the check in generic_xdp_install entirely. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210702111825.491065-5-memxor@gmail.com
2021-07-08bpf: cpumap: Implement generic cpumapKumar Kartikeya Dwivedi1-18/+98
This change implements CPUMAP redirect support for generic XDP programs. The idea is to reuse the cpu map entry's queue that is used to push native xdp frames for redirecting skb to a different CPU. This will match native XDP behavior (in that RPS is invoked again for packet reinjected into networking stack). To be able to determine whether the incoming skb is from the driver or cpumap, we reuse skb->redirected bit that skips generic XDP processing when it is set. To always make use of this, CONFIG_NET_REDIRECT guard on it has been lifted and it is always available. >From the redirect side, we add the skb to ptr_ring with its lowest bit set to 1. This should be safe as skb is not 1-byte aligned. This allows kthread to discern between xdp_frames and sk_buff. On consumption of the ptr_ring item, the lowest bit is unset. In the end, the skb is simply added to the list that kthread is anyway going to maintain for xdp_frames converted to skb, and then received again by using netif_receive_skb_list. Bulking optimization for generic cpumap is left as an exercise for a future patch for now. Since cpumap entry progs are now supported, also remove check in generic_xdp_install for the cpumap. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Link: https://lore.kernel.org/bpf/20210702111825.491065-4-memxor@gmail.com
2021-07-01bpf, devmap: Convert remaining READ_ONCE() to rcu_dereference_check()Toke Høiland-Jørgensen1-2/+4
There were a couple of READ_ONCE()-invocations left-over by the devmap RCU conversion. Convert these to rcu_dereference_check() as well to avoid complaints from sparse. Fixes: 782347b6bcad ("xdp: Add proper __rcu annotations to redirect map entries") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210629093907.573598-1-toke@redhat.com
2021-06-30Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski3-5/+7
Trivial conflict in net/netfilter/nf_tables_api.c. Duplicate fix in tools/testing/selftests/net/devlink_port_split.py - take the net-next version. skmsg, and L4 bpf - keep the bpf code but remove the flags and err params. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-06-29Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextDavid S. Miller6-44/+53
Daniel Borkmann says: ==================== pull-request: bpf-next 2021-06-28 The following pull-request contains BPF updates for your *net-next* tree. We've added 37 non-merge commits during the last 12 day(s) which contain a total of 56 files changed, 394 insertions(+), 380 deletions(-). The main changes are: 1) XDP driver RCU cleanups, from Toke Høiland-Jørgensen and Paul E. McKenney. 2) Fix bpf_skb_change_proto() IPv4/v6 GSO handling, from Maciej Żenczykowski. 3) Fix false positive kmemleak report for BPF ringbuf alloc, from Rustam Kovhaev. 4) Fix x86 JIT's extable offset calculation for PROBE_LDX NULL, from Ravi Bangoria. 5) Enable libbpf fallback probing with tracing under RHEL7, from Jonathan Edwards. 6) Clean up x86 JIT to remove unused cnt tracking from EMIT macro, from Jiri Olsa. 7) Netlink cleanups for libbpf to please Coverity, from Kumar Kartikeya Dwivedi. 8) Allow to retrieve ancestor cgroup id in tracing programs, from Namhyung Kim. 9) Fix lirc BPF program query to use user-provided prog_cnt, from Sean Young. 10) Add initial libbpf doc including generated kdoc for its API, from Grant Seltzer. 11) Make xdp_rxq_info_unreg_mem_model() more robust, from Jakub Kicinski. 12) Fix up bpfilter startup log-level to info level, from Gary Lin. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-28bpf: Fix false positive kmemleak report in bpf_ringbuf_area_alloc()Rustam Kovhaev1-0/+2
kmemleak scans struct page, but it does not scan the page content. If we allocate some memory with kmalloc(), then allocate page with alloc_page(), and if we put kmalloc pointer somewhere inside that page, kmemleak will report kmalloc pointer as a false positive. We can instruct kmemleak to scan the memory area by calling kmemleak_alloc() and kmemleak_free(), but part of struct bpf_ringbuf is mmaped to user space, and if struct bpf_ringbuf changes we would have to revisit and review size argument in kmemleak_alloc(), because we do not want kmemleak to scan the user space memory. Let's simplify things and use kmemleak_not_leak() here. For posterity, also adding additional prior analysis from Andrii: I think either kmemleak or syzbot are misreporting this. I've added a bunch of printks around all allocations performed by BPF ringbuf. [...] On repro side I get these two warnings: [vmuser@archvm bpf]$ sudo ./repro BUG: memory leak unreferenced object 0xffff88810d538c00 (size 64): comm "repro", pid 2140, jiffies 4294692933 (age 14.540s) hex dump (first 32 bytes): 00 af 19 04 00 ea ff ff c0 ae 19 04 00 ea ff ff ................ 80 ae 19 04 00 ea ff ff c0 29 2e 04 00 ea ff ff .........)...... backtrace: [<0000000077bfbfbd>] __bpf_map_area_alloc+0x31/0xc0 [<00000000587fa522>] ringbuf_map_alloc.cold.4+0x48/0x218 [<0000000044d49e96>] __do_sys_bpf+0x359/0x1d90 [<00000000f601d565>] do_syscall_64+0x2d/0x40 [<0000000043d3112a>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff88810d538c80 (size 64): comm "repro", pid 2143, jiffies 4294699025 (age 8.448s) hex dump (first 32 bytes): 80 aa 19 04 00 ea ff ff 00 ab 19 04 00 ea ff ff ................ c0 ab 19 04 00 ea ff ff 80 44 28 04 00 ea ff ff .........D(..... backtrace: [<0000000077bfbfbd>] __bpf_map_area_alloc+0x31/0xc0 [<00000000587fa522>] ringbuf_map_alloc.cold.4+0x48/0x218 [<0000000044d49e96>] __do_sys_bpf+0x359/0x1d90 [<00000000f601d565>] do_syscall_64+0x2d/0x40 [<0000000043d3112a>] entry_SYSCALL_64_after_hwframe+0x44/0xae Note that both reported leaks (ffff88810d538c80 and ffff88810d538c00) correspond to pages array bpf_ringbuf is allocating and tracking properly internally. Note also that syzbot repro doesn't close FD of created BPF ringbufs, and even when ./repro itself exits with error, there are still two forked processes hanging around in my system. So clearly ringbuf maps are alive at that point. So reporting any memory leak looks weird at that point, because that memory is being used by active referenced BPF ringbuf. It's also a question why repro doesn't clean up its forks. But if I do a `pkill repro`, I do see that all the allocated memory is /properly/ cleaned up [and the] "leaks" are deallocated properly. BTW, if I add close() right after bpf() syscall in syzbot repro, I see that everything is immediately deallocated, like designed. And no memory leak is reported. So I don't think the problem is anywhere in bpf_ringbuf code, rather in the leak detection and/or repro itself. Reported-by: syzbot+5d895828587f49e7fe9b@syzkaller.appspotmail.com Signed-off-by: Rustam Kovhaev <rkovhaev@gmail.com> [ Daniel: also included analysis from Andrii to the commit log ] Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: syzbot+5d895828587f49e7fe9b@syzkaller.appspotmail.com Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/CAEf4BzYk+dqs+jwu6VKXP-RttcTEGFe+ySTGWT9CRNkagDiJVA@mail.gmail.com Link: https://lore.kernel.org/lkml/YNTAqiE7CWJhOK2M@nuc10 Link: https://lore.kernel.org/lkml/20210615101515.GC26027@arm.com Link: https://syzkaller.appspot.com/bug?extid=5d895828587f49e7fe9b Link: https://lore.kernel.org/bpf/20210626181156.1873604-1-rkovhaev@gmail.com