summaryrefslogtreecommitdiff
path: root/fs/btrfs/tree-log.h
AgeCommit message (Collapse)AuthorFilesLines
2020-10-07btrfs: make fast fsyncs wait only for writebackFilipe Manana1-2/+16
Currently regardless of a full or a fast fsync we always wait for ordered extents to complete, and then start logging the inode after that. However for fast fsyncs we can just wait for the writeback to complete, we don't need to wait for the ordered extents to complete since we use the list of modified extents maps to figure out which extents we must log and we can get their checksums directly from the ordered extents that are still in flight, otherwise look them up from the checksums tree. Until commit b5e6c3e170b770 ("btrfs: always wait on ordered extents at fsync time"), for fast fsyncs, we used to start logging without even waiting for the writeback to complete first, we would wait for it to complete after logging, while holding a transaction open, which lead to performance issues when using cgroups and probably for other cases too, as wait for IO while holding a transaction handle should be avoided as much as possible. After that, for fast fsyncs, we started to wait for ordered extents to complete before starting to log, which adds some latency to fsyncs and we even got at least one report about a performance drop which bisected to that particular change: https://lore.kernel.org/linux-btrfs/20181109215148.GF23260@techsingularity.net/ This change makes fast fsyncs only wait for writeback to finish before starting to log the inode, instead of waiting for both the writeback to finish and for the ordered extents to complete. This brings back part of the logic we had that extracts checksums from in flight ordered extents, which are not yet in the checksums tree, and making sure transaction commits wait for the completion of ordered extents previously logged (by far most of the time they have already completed by the time a transaction commit starts, resulting in no wait at all), to avoid any data loss if an ordered extent completes after the transaction used to log an inode is committed, followed by a power failure. When there are no other tasks accessing the checksums and the subvolume btrees, the ordered extent completion is pretty fast, typically taking 100 to 200 microseconds only in my observations. However when there are other tasks accessing these btrees, ordered extent completion can take a lot more time due to lock contention on nodes and leaves of these btrees. I've seen cases over 2 milliseconds, which starts to be significant. In particular when we do have concurrent fsyncs against different files there is a lot of contention on the checksums btree, since we have many tasks writing the checksums into the btree and other tasks that already started the logging phase are doing lookups for checksums in the btree. This change also turns all ranged fsyncs into full ranged fsyncs, which is something we already did when not using the NO_HOLES features or when doing a full fsync. This is to guarantee we never miss checksums due to writeback having been triggered only for a part of an extent, and we end up logging the full extent but only checksums for the written range, which results in missing checksums after log replay. Allowing ranged fsyncs to operate again only in the original range, when using the NO_HOLES feature and doing a fast fsync is doable but requires some non trivial changes to the writeback path, which can always be worked on later if needed, but I don't think they are a very common use case. Several tests were performed using fio for different numbers of concurrent jobs, each writing and fsyncing its own file, for both sequential and random file writes. The tests were run on bare metal, no virtualization, on a box with 12 cores (Intel i7-8700), 64Gb of RAM and a NVMe device, with a kernel configuration that is the default of typical distributions (debian in this case), without debug options enabled (kasan, kmemleak, slub debug, debug of page allocations, lock debugging, etc). The following script that calls fio was used: $ cat test-fsync.sh #!/bin/bash DEV=/dev/nvme0n1 MNT=/mnt/btrfs MOUNT_OPTIONS="-o ssd -o space_cache=v2" MKFS_OPTIONS="-d single -m single" if [ $# -ne 5 ]; then echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ BLOCK_SIZE [write|randwrite]" exit 1 fi NUM_JOBS=$1 FILE_SIZE=$2 FSYNC_FREQ=$3 BLOCK_SIZE=$4 WRITE_MODE=$5 if [ "$WRITE_MODE" != "write" ] && [ "$WRITE_MODE" != "randwrite" ]; then echo "Invalid WRITE_MODE, must be 'write' or 'randwrite'" exit 1 fi cat <<EOF > /tmp/fio-job.ini [writers] rw=$WRITE_MODE fsync=$FSYNC_FREQ fallocate=none group_reporting=1 direct=0 bs=$BLOCK_SIZE ioengine=sync size=$FILE_SIZE directory=$MNT numjobs=$NUM_JOBS EOF echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor echo echo "Using config:" echo cat /tmp/fio-job.ini echo umount $MNT &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT fio /tmp/fio-job.ini umount $MNT The results were the following: ************************* *** sequential writes *** ************************* ==== 1 job, 8GiB file, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=36.6MiB/s (38.4MB/s), 36.6MiB/s-36.6MiB/s (38.4MB/s-38.4MB/s), io=8192MiB (8590MB), run=223689-223689msec After patch: WRITE: bw=40.2MiB/s (42.1MB/s), 40.2MiB/s-40.2MiB/s (42.1MB/s-42.1MB/s), io=8192MiB (8590MB), run=203980-203980msec (+9.8%, -8.8% runtime) ==== 2 jobs, 4GiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=35.8MiB/s (37.5MB/s), 35.8MiB/s-35.8MiB/s (37.5MB/s-37.5MB/s), io=8192MiB (8590MB), run=228950-228950msec After patch: WRITE: bw=43.5MiB/s (45.6MB/s), 43.5MiB/s-43.5MiB/s (45.6MB/s-45.6MB/s), io=8192MiB (8590MB), run=188272-188272msec (+21.5% throughput, -17.8% runtime) ==== 4 jobs, 2GiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=50.1MiB/s (52.6MB/s), 50.1MiB/s-50.1MiB/s (52.6MB/s-52.6MB/s), io=8192MiB (8590MB), run=163446-163446msec After patch: WRITE: bw=64.5MiB/s (67.6MB/s), 64.5MiB/s-64.5MiB/s (67.6MB/s-67.6MB/s), io=8192MiB (8590MB), run=126987-126987msec (+28.7% throughput, -22.3% runtime) ==== 8 jobs, 1GiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=64.0MiB/s (68.1MB/s), 64.0MiB/s-64.0MiB/s (68.1MB/s-68.1MB/s), io=8192MiB (8590MB), run=126075-126075msec After patch: WRITE: bw=86.8MiB/s (91.0MB/s), 86.8MiB/s-86.8MiB/s (91.0MB/s-91.0MB/s), io=8192MiB (8590MB), run=94358-94358msec (+35.6% throughput, -25.2% runtime) ==== 16 jobs, 512MiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=79.8MiB/s (83.6MB/s), 79.8MiB/s-79.8MiB/s (83.6MB/s-83.6MB/s), io=8192MiB (8590MB), run=102694-102694msec After patch: WRITE: bw=107MiB/s (112MB/s), 107MiB/s-107MiB/s (112MB/s-112MB/s), io=8192MiB (8590MB), run=76446-76446msec (+34.1% throughput, -25.6% runtime) ==== 32 jobs, 512MiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=93.2MiB/s (97.7MB/s), 93.2MiB/s-93.2MiB/s (97.7MB/s-97.7MB/s), io=16.0GiB (17.2GB), run=175836-175836msec After patch: WRITE: bw=111MiB/s (117MB/s), 111MiB/s-111MiB/s (117MB/s-117MB/s), io=16.0GiB (17.2GB), run=147001-147001msec (+19.1% throughput, -16.4% runtime) ==== 64 jobs, 512MiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=108MiB/s (114MB/s), 108MiB/s-108MiB/s (114MB/s-114MB/s), io=32.0GiB (34.4GB), run=302656-302656msec After patch: WRITE: bw=133MiB/s (140MB/s), 133MiB/s-133MiB/s (140MB/s-140MB/s), io=32.0GiB (34.4GB), run=246003-246003msec (+23.1% throughput, -18.7% runtime) ************************ *** random writes *** ************************ ==== 1 job, 8GiB file, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=11.5MiB/s (12.0MB/s), 11.5MiB/s-11.5MiB/s (12.0MB/s-12.0MB/s), io=8192MiB (8590MB), run=714281-714281msec After patch: WRITE: bw=11.6MiB/s (12.2MB/s), 11.6MiB/s-11.6MiB/s (12.2MB/s-12.2MB/s), io=8192MiB (8590MB), run=705959-705959msec (+0.9% throughput, -1.7% runtime) ==== 2 jobs, 4GiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=12.8MiB/s (13.5MB/s), 12.8MiB/s-12.8MiB/s (13.5MB/s-13.5MB/s), io=8192MiB (8590MB), run=638101-638101msec After patch: WRITE: bw=13.1MiB/s (13.7MB/s), 13.1MiB/s-13.1MiB/s (13.7MB/s-13.7MB/s), io=8192MiB (8590MB), run=625374-625374msec (+2.3% throughput, -2.0% runtime) ==== 4 jobs, 2GiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=15.4MiB/s (16.2MB/s), 15.4MiB/s-15.4MiB/s (16.2MB/s-16.2MB/s), io=8192MiB (8590MB), run=531146-531146msec After patch: WRITE: bw=17.8MiB/s (18.7MB/s), 17.8MiB/s-17.8MiB/s (18.7MB/s-18.7MB/s), io=8192MiB (8590MB), run=460431-460431msec (+15.6% throughput, -13.3% runtime) ==== 8 jobs, 1GiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=19.9MiB/s (20.8MB/s), 19.9MiB/s-19.9MiB/s (20.8MB/s-20.8MB/s), io=8192MiB (8590MB), run=412664-412664msec After patch: WRITE: bw=22.2MiB/s (23.3MB/s), 22.2MiB/s-22.2MiB/s (23.3MB/s-23.3MB/s), io=8192MiB (8590MB), run=368589-368589msec (+11.6% throughput, -10.7% runtime) ==== 16 jobs, 512MiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=29.3MiB/s (30.7MB/s), 29.3MiB/s-29.3MiB/s (30.7MB/s-30.7MB/s), io=8192MiB (8590MB), run=279924-279924msec After patch: WRITE: bw=30.4MiB/s (31.9MB/s), 30.4MiB/s-30.4MiB/s (31.9MB/s-31.9MB/s), io=8192MiB (8590MB), run=269258-269258msec (+3.8% throughput, -3.8% runtime) ==== 32 jobs, 512MiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=36.9MiB/s (38.7MB/s), 36.9MiB/s-36.9MiB/s (38.7MB/s-38.7MB/s), io=16.0GiB (17.2GB), run=443581-443581msec After patch: WRITE: bw=41.6MiB/s (43.6MB/s), 41.6MiB/s-41.6MiB/s (43.6MB/s-43.6MB/s), io=16.0GiB (17.2GB), run=394114-394114msec (+12.7% throughput, -11.2% runtime) ==== 64 jobs, 512MiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=45.9MiB/s (48.1MB/s), 45.9MiB/s-45.9MiB/s (48.1MB/s-48.1MB/s), io=32.0GiB (34.4GB), run=714614-714614msec After patch: WRITE: bw=48.8MiB/s (51.1MB/s), 48.8MiB/s-48.8MiB/s (51.1MB/s-51.1MB/s), io=32.0GiB (34.4GB), run=672087-672087msec (+6.3% throughput, -6.0% runtime) Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: do not commit logs and transactions during link and rename operationsFilipe Manana1-10/+4
Since commit d4682ba03ef618 ("Btrfs: sync log after logging new name") we started to commit logs, and fallback to transaction commits when we failed to log the new names or commit the logs, after link and rename operations when the target inodes (or their parents) were previously logged in the current transaction. This was to avoid losing directories despite an explicit fsync on them when they are ancestors of some inode that got a new named logged, due to a link or rename operation. However that adds the cost of starting IO and waiting for it to complete, which can cause higher latencies for applications. Instead of doing that, just make sure that when we log a new name for an inode we don't mark any of its ancestors as logged, so that if any one does an fsync against any of them, without doing any other change on them, the fsync commits the log. This way we only pay the cost of a log commit (or a transaction commit if something goes wrong or a new block group was created) if the application explicitly asks to fsync any of the parent directories. Using dbench, which mixes several filesystems operations including renames, revealed some significant latency gains. The following script that uses dbench was used to test this: #!/bin/bash DEV=/dev/nvme0n1 MNT=/mnt/btrfs MOUNT_OPTIONS="-o ssd -o space_cache=v2" MKFS_OPTIONS="-m single -d single" THREADS=16 echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT dbench -t 300 -D $MNT $THREADS umount $MNT The test was run on bare metal, no virtualization, on a box with 12 cores (Intel i7-8700), 64Gb of RAM and using a NVMe device, with a kernel configuration that is the default of typical distributions (debian in this case), without debug options enabled (kasan, kmemleak, slub debug, debug of page allocations, lock debugging, etc). Results before this patch: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 10750455 0.011 155.088 Close 7896674 0.001 0.243 Rename 455222 2.158 1101.947 Unlink 2171189 0.067 121.638 Deltree 256 2.425 7.816 Mkdir 128 0.002 0.003 Qpathinfo 9744323 0.006 21.370 Qfileinfo 1707092 0.001 0.146 Qfsinfo 1786756 0.001 11.228 Sfileinfo 875612 0.003 21.263 Find 3767281 0.025 9.617 WriteX 5356924 0.011 211.390 ReadX 16852694 0.003 9.442 LockX 35008 0.002 0.119 UnlockX 35008 0.001 0.138 Flush 753458 4.252 1102.249 Throughput 1128.35 MB/sec 16 clients 16 procs max_latency=1102.255 ms Results after this patch: 16 clients, after Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 11471098 0.012 448.281 Close 8426396 0.001 0.925 Rename 485746 0.123 267.183 Unlink 2316477 0.080 63.433 Deltree 288 2.830 11.144 Mkdir 144 0.003 0.010 Qpathinfo 10397420 0.006 10.288 Qfileinfo 1822039 0.001 0.169 Qfsinfo 1906497 0.002 14.039 Sfileinfo 934433 0.004 2.438 Find 4019879 0.026 10.200 WriteX 5718932 0.011 200.985 ReadX 17981671 0.003 10.036 LockX 37352 0.002 0.076 UnlockX 37352 0.001 0.109 Flush 804018 5.015 778.033 Throughput 1201.98 MB/sec 16 clients 16 procs max_latency=778.036 ms (+6.5% throughput, -29.4% max latency, -75.8% rename latency) Test case generic/498 from fstests tests the scenario that the previously mentioned commit fixed. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: get fs_info from trans in btrfs_set_log_full_commitDavid Sterba1-3/+2
We can read fs_info from the transaction and can drop it from the parameters. Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: get fs_info from trans in btrfs_need_log_full_commitDavid Sterba1-3/+2
We can read fs_info from the transaction and can drop it from the parameters. Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17Btrfs: remove no longer used io_err from btrfs_log_ctxFilipe Manana1-2/+0
The io_err field of struct btrfs_log_ctx is no longer used after the recent simplification of the fast fsync path, where we now wait for ordered extents to complete before logging the inode. We did this in commit b5e6c3e170b7 ("btrfs: always wait on ordered extents at fsync time") and commit a2120a473a80 ("btrfs: clean up the left over logged_list usage") removed its last use. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15btrfs: change btrfs_pin_log_trans to return voidzhong jiang1-1/+1
btrfs_pin_log_trans defines the variable "ret" for return value, but it is not modified after initialization. Further, I find that none of the callers do handles the return value, so it is safe to drop the unneeded "ret" and make it return void. Signed-off-by: zhong jiang <zhongjiang@huawei.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-23Btrfs: sync log after logging new nameFilipe Manana1-1/+9
When we add a new name for an inode which was logged in the current transaction, we update the inode in the log so that its new name and ancestors are added to the log. However when we do this we do not persist the log, so the changes remain in memory only, and as a consequence, any ancestors that were created in the current transaction are updated such that future calls to btrfs_inode_in_log() return true. This leads to a subsequent fsync against such new ancestor directories returning immediately, without persisting the log, therefore after a power failure the new ancestor directories do not exist, despite fsync being called against them explicitly. Example: $ mkfs.btrfs -f /dev/sdb $ mount /dev/sdb /mnt $ mkdir /mnt/A $ mkdir /mnt/B $ mkdir /mnt/A/C $ touch /mnt/B/foo $ xfs_io -c "fsync" /mnt/B/foo $ ln /mnt/B/foo /mnt/A/C/foo $ xfs_io -c "fsync" /mnt/A <power failure> After the power failure, directory "A" does not exist, despite the explicit fsync on it. Instead of fixing this by changing the behaviour of the explicit fsync on directory "A" to persist the log instead of doing nothing, make the logging of the new file name (which happens when creating a hard link or renaming) persist the log. This approach not only is simpler, not requiring addition of new fields to the inode in memory structure, but also gives us the same behaviour as ext4, xfs and f2fs (possibly other filesystems too). A test case for fstests follows soon. Fixes: 12fcfd22fe5b ("Btrfs: tree logging unlink/rename fixes") Reported-by: Vijay Chidambaram <vvijay03@gmail.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12btrfs: replace GPL boilerplate by SPDX -- headersDavid Sterba1-16/+4
Remove GPL boilerplate text (long, short, one-line) and keep the rest, ie. personal, company or original source copyright statements. Add the SPDX header. Unify the include protection macros to match the file names. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-26btrfs: Remove root argument from btrfs_log_dentry_safeNikolay Borisov1-1/+1
Now that nothing uses the root arg of btrfs_log_dentry_safe it can be safely removed. No functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14btrfs: Make btrfs_del_inode_ref take btrfs_inodeNikolay Borisov1-1/+1
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14btrfs: Make btrfs_del_dir_entries_in_log take btrfs_inodeNikolay Borisov1-1/+1
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14btrfs: Make btrfs_log_new_name take btrfs_inodeNikolay Borisov1-1/+1
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14btrfs: Make btrfs_record_snapshot_destroy take btrfs_inodeNikolay Borisov1-1/+1
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14btrfs: Make btrfs_record_unlink_dir take btrfs_inodeNikolay Borisov1-1/+1
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14Btrfs: ACCESS_ONCE cleanupSeraphime Kirkovski1-2/+2
This replaces ACCESS_ONCE macro with the corresponding READ|WRITE macros Signed-off-by: Seraphime Kirkovski <kirkseraph@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-08-25Btrfs: fix lockdep warning on deadlock against an inode's log mutexFilipe Manana1-1/+4
Commit 44f714dae50a ("Btrfs: improve performance on fsync against new inode after rename/unlink"), which landed in 4.8-rc2, introduced a possibility for a deadlock due to double locking of an inode's log mutex by the same task, which lockdep reports with: [23045.433975] ============================================= [23045.434748] [ INFO: possible recursive locking detected ] [23045.435426] 4.7.0-rc6-btrfs-next-34+ #1 Not tainted [23045.436044] --------------------------------------------- [23045.436044] xfs_io/3688 is trying to acquire lock: [23045.436044] (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs] [23045.436044] but task is already holding lock: [23045.436044] (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs] [23045.436044] other info that might help us debug this: [23045.436044] Possible unsafe locking scenario: [23045.436044] CPU0 [23045.436044] ---- [23045.436044] lock(&ei->log_mutex); [23045.436044] lock(&ei->log_mutex); [23045.436044] *** DEADLOCK *** [23045.436044] May be due to missing lock nesting notation [23045.436044] 3 locks held by xfs_io/3688: [23045.436044] #0: (&sb->s_type->i_mutex_key#15){+.+...}, at: [<ffffffffa035f2ae>] btrfs_sync_file+0x14e/0x425 [btrfs] [23045.436044] #1: (sb_internal#2){.+.+.+}, at: [<ffffffff8118446b>] __sb_start_write+0x5f/0xb0 [23045.436044] #2: (&ei->log_mutex){+.+...}, at: [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs] [23045.436044] stack backtrace: [23045.436044] CPU: 4 PID: 3688 Comm: xfs_io Not tainted 4.7.0-rc6-btrfs-next-34+ #1 [23045.436044] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014 [23045.436044] 0000000000000000 ffff88022f5f7860 ffffffff8127074d ffffffff82a54b70 [23045.436044] ffffffff82a54b70 ffff88022f5f7920 ffffffff81092897 ffff880228015d68 [23045.436044] 0000000000000000 ffffffff82a54b70 ffffffff829c3f00 ffff880228015d68 [23045.436044] Call Trace: [23045.436044] [<ffffffff8127074d>] dump_stack+0x67/0x90 [23045.436044] [<ffffffff81092897>] __lock_acquire+0xcbb/0xe4e [23045.436044] [<ffffffff8109155f>] ? mark_lock+0x24/0x201 [23045.436044] [<ffffffff8109179a>] ? mark_held_locks+0x5e/0x74 [23045.436044] [<ffffffff81092de0>] lock_acquire+0x12f/0x1c3 [23045.436044] [<ffffffff81092de0>] ? lock_acquire+0x12f/0x1c3 [23045.436044] [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs] [23045.436044] [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs] [23045.436044] [<ffffffff814a51a4>] mutex_lock_nested+0x77/0x3a7 [23045.436044] [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs] [23045.436044] [<ffffffffa039705e>] ? btrfs_release_delayed_node+0xb/0xd [btrfs] [23045.436044] [<ffffffffa038552d>] btrfs_log_inode+0x13a/0xc95 [btrfs] [23045.436044] [<ffffffffa038552d>] ? btrfs_log_inode+0x13a/0xc95 [btrfs] [23045.436044] [<ffffffff810a0ed1>] ? vprintk_emit+0x453/0x465 [23045.436044] [<ffffffffa0385a61>] btrfs_log_inode+0x66e/0xc95 [btrfs] [23045.436044] [<ffffffffa03c084d>] log_new_dir_dentries+0x26c/0x359 [btrfs] [23045.436044] [<ffffffffa03865aa>] btrfs_log_inode_parent+0x4a6/0x628 [btrfs] [23045.436044] [<ffffffffa0387552>] btrfs_log_dentry_safe+0x5a/0x75 [btrfs] [23045.436044] [<ffffffffa035f464>] btrfs_sync_file+0x304/0x425 [btrfs] [23045.436044] [<ffffffff811acaf4>] vfs_fsync_range+0x8c/0x9e [23045.436044] [<ffffffff811acb22>] vfs_fsync+0x1c/0x1e [23045.436044] [<ffffffff811acc79>] do_fsync+0x31/0x4a [23045.436044] [<ffffffff811ace99>] SyS_fsync+0x10/0x14 [23045.436044] [<ffffffff814a88e5>] entry_SYSCALL_64_fastpath+0x18/0xa8 [23045.436044] [<ffffffff8108f039>] ? trace_hardirqs_off_caller+0x3f/0xaa An example reproducer for this is: $ mkfs.btrfs -f /dev/sdb $ mount /dev/sdb /mnt $ mkdir /mnt/dir $ touch /mnt/dir/foo $ sync $ mv /mnt/dir/foo /mnt/dir/bar $ touch /mnt/dir/foo $ xfs_io -c "fsync" /mnt/dir/bar This is because while logging the inode of file bar we end up logging its parent directory (since its inode has an unlink_trans field matching the current transaction id due to the rename operation), which in turn logs the inodes for all its new dentries, so that the new inode for the new file named foo gets logged which in turn triggered another logging attempt for the inode we are fsync'ing, since that inode had an old name that corresponds to the name of the new inode. So fix this by ensuring that when logging the inode for a new dentry that has a name matching an old name of some other inode, we don't log again the original inode that we are fsync'ing. Fixes: 44f714dae50a ("Btrfs: improve performance on fsync against new inode after rename/unlink") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2016-03-01Btrfs: fix unreplayable log after snapshot delete + parent dir fsyncFilipe Manana1-0/+2
If we delete a snapshot, fsync its parent directory and crash/power fail before the next transaction commit, on the next mount when we attempt to replay the log tree of the root containing the parent directory we will fail and prevent the filesystem from mounting, which is solvable by wiping out the log trees with the btrfs-zero-log tool but very inconvenient as we will lose any data and metadata fsynced before the parent directory was fsynced. For example: $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt $ mkdir /mnt/testdir $ btrfs subvolume snapshot /mnt /mnt/testdir/snap $ btrfs subvolume delete /mnt/testdir/snap $ xfs_io -c "fsync" /mnt/testdir < crash / power failure and reboot > $ mount /dev/sdc /mnt mount: mount(2) failed: No such file or directory And in dmesg/syslog we get the following message and trace: [192066.361162] BTRFS info (device dm-0): failed to delete reference to snap, inode 257 parent 257 [192066.363010] ------------[ cut here ]------------ [192066.365268] WARNING: CPU: 4 PID: 5130 at fs/btrfs/inode.c:3986 __btrfs_unlink_inode+0x17a/0x354 [btrfs]() [192066.367250] BTRFS: Transaction aborted (error -2) [192066.368401] Modules linked in: btrfs dm_flakey dm_mod ppdev sha256_generic xor raid6_pq hmac drbg ansi_cprng aesni_intel acpi_cpufreq tpm_tis aes_x86_64 tpm ablk_helper evdev cryptd sg parport_pc i2c_piix4 psmouse lrw parport i2c_core pcspkr gf128mul processor serio_raw glue_helper button loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring crc32c_intel scsi_mod e1000 virtio floppy [last unloaded: btrfs] [192066.377154] CPU: 4 PID: 5130 Comm: mount Tainted: G W 4.4.0-rc6-btrfs-next-20+ #1 [192066.378875] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [192066.380889] 0000000000000000 ffff880143923670 ffffffff81257570 ffff8801439236b8 [192066.382561] ffff8801439236a8 ffffffff8104ec07 ffffffffa039dc2c 00000000fffffffe [192066.384191] ffff8801ed31d000 ffff8801b9fc9c88 ffff8801086875e0 ffff880143923710 [192066.385827] Call Trace: [192066.386373] [<ffffffff81257570>] dump_stack+0x4e/0x79 [192066.387387] [<ffffffff8104ec07>] warn_slowpath_common+0x99/0xb2 [192066.388429] [<ffffffffa039dc2c>] ? __btrfs_unlink_inode+0x17a/0x354 [btrfs] [192066.389236] [<ffffffff8104ec68>] warn_slowpath_fmt+0x48/0x50 [192066.389884] [<ffffffffa039dc2c>] __btrfs_unlink_inode+0x17a/0x354 [btrfs] [192066.390621] [<ffffffff81184b55>] ? iput+0xb0/0x266 [192066.391200] [<ffffffffa039ea25>] btrfs_unlink_inode+0x1c/0x3d [btrfs] [192066.391930] [<ffffffffa03ca623>] check_item_in_log+0x1fe/0x29b [btrfs] [192066.392715] [<ffffffffa03ca827>] replay_dir_deletes+0x167/0x1cf [btrfs] [192066.393510] [<ffffffffa03cccc7>] replay_one_buffer+0x417/0x570 [btrfs] [192066.394241] [<ffffffffa03ca164>] walk_up_log_tree+0x10e/0x1dc [btrfs] [192066.394958] [<ffffffffa03cac72>] walk_log_tree+0xa5/0x190 [btrfs] [192066.395628] [<ffffffffa03ce8b8>] btrfs_recover_log_trees+0x239/0x32c [btrfs] [192066.396790] [<ffffffffa03cc8b0>] ? replay_one_extent+0x50a/0x50a [btrfs] [192066.397891] [<ffffffffa0394041>] open_ctree+0x1d8b/0x2167 [btrfs] [192066.398897] [<ffffffffa03706e1>] btrfs_mount+0x5ef/0x729 [btrfs] [192066.399823] [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf [192066.400739] [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3 [192066.401700] [<ffffffff811714b9>] mount_fs+0x67/0x131 [192066.402482] [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde [192066.403930] [<ffffffffa03702bd>] btrfs_mount+0x1cb/0x729 [btrfs] [192066.404831] [<ffffffff8108ad98>] ? trace_hardirqs_on+0xd/0xf [192066.405726] [<ffffffff8108959b>] ? lockdep_init_map+0xb9/0x1b3 [192066.406621] [<ffffffff811714b9>] mount_fs+0x67/0x131 [192066.407401] [<ffffffff81188560>] vfs_kern_mount+0x6c/0xde [192066.408247] [<ffffffff8118ae36>] do_mount+0x893/0x9d2 [192066.409047] [<ffffffff8113009b>] ? strndup_user+0x3f/0x8c [192066.409842] [<ffffffff8118b187>] SyS_mount+0x75/0xa1 [192066.410621] [<ffffffff8147e517>] entry_SYSCALL_64_fastpath+0x12/0x6b [192066.411572] ---[ end trace 2de42126c1e0a0f0 ]--- [192066.412344] BTRFS: error (device dm-0) in __btrfs_unlink_inode:3986: errno=-2 No such entry [192066.413748] BTRFS: error (device dm-0) in btrfs_replay_log:2464: errno=-2 No such entry (Failed to recover log tree) [192066.415458] BTRFS error (device dm-0): cleaner transaction attach returned -30 [192066.444613] BTRFS: open_ctree failed This happens because when we are replaying the log and processing the directory entry pointing to the snapshot in the subvolume tree, we treat its btrfs_dir_item item as having a location with a key type matching BTRFS_INODE_ITEM_KEY, which is wrong because the type matches BTRFS_ROOT_ITEM_KEY and therefore must be processed differently, as the object id refers to a root number and not to an inode in the root containing the parent directory. So fix this by triggering a transaction commit if an fsync against the parent directory is requested after deleting a snapshot. This is the simplest approach for a rare use case. Some alternative that avoids the transaction commit would require more code to explicitly delete the snapshot at log replay time (factoring out common code from ioctl.c: btrfs_ioctl_snap_destroy()), special care at fsync time to remove the log tree of the snapshot's root from the log root of the root of tree roots, amongst other steps. A test case for xfstests that triggers the issue follows. seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { _cleanup_flakey cd / rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter . ./common/dmflakey # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch _require_dm_target flakey _require_metadata_journaling $SCRATCH_DEV rm -f $seqres.full _scratch_mkfs >>$seqres.full 2>&1 _init_flakey _mount_flakey # Create a snapshot at the root of our filesystem (mount point path), delete it, # fsync the mount point path, crash and mount to replay the log. This should # succeed and after the filesystem is mounted the snapshot should not be visible # anymore. _run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/snap1 _run_btrfs_util_prog subvolume delete $SCRATCH_MNT/snap1 $XFS_IO_PROG -c "fsync" $SCRATCH_MNT _flakey_drop_and_remount [ -e $SCRATCH_MNT/snap1 ] && \ echo "Snapshot snap1 still exists after log replay" # Similar scenario as above, but this time the snapshot is created inside a # directory and not directly under the root (mount point path). mkdir $SCRATCH_MNT/testdir _run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/testdir/snap2 _run_btrfs_util_prog subvolume delete $SCRATCH_MNT/testdir/snap2 $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir _flakey_drop_and_remount [ -e $SCRATCH_MNT/testdir/snap2 ] && \ echo "Snapshot snap2 still exists after log replay" _unmount_flakey echo "Silence is golden" status=0 exit Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-03-27Btrfs: fix metadata inconsistencies after directory fsyncFilipe Manana1-0/+2
We can get into inconsistency between inodes and directory entries after fsyncing a directory. The issue is that while a directory gets the new dentries persisted in the fsync log and replayed at mount time, the link count of the inode that directory entries point to doesn't get updated, staying with an incorrect link count (smaller then the correct value). This later leads to stale file handle errors when accessing (including attempt to delete) some of the links if all the other ones are removed, which also implies impossibility to delete the parent directories, since the dentries can not be removed. Another issue is that (unlike ext3/4, xfs, f2fs, reiserfs, nilfs2), when fsyncing a directory, new files aren't logged (their metadata and dentries) nor any child directories. So this patch fixes this issue too, since it has the same resolution as the incorrect inode link count issue mentioned before. This is very easy to reproduce, and the following excerpt from my test case for xfstests shows how: _scratch_mkfs >> $seqres.full 2>&1 _init_flakey _mount_flakey # Create our main test file and directory. $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" $SCRATCH_MNT/foo | _filter_xfs_io mkdir $SCRATCH_MNT/mydir # Make sure all metadata and data are durably persisted. sync # Add a hard link to 'foo' inside our test directory and fsync only the # directory. The btrfs fsync implementation had a bug that caused the new # directory entry to be visible after the fsync log replay but, the inode # of our file remained with a link count of 1. ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_2 # Add a few more links and new files. # This is just to verify nothing breaks or gives incorrect results after the # fsync log is replayed. ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/foo_3 $XFS_IO_PROG -f -c "pwrite -S 0xff 0 64K" $SCRATCH_MNT/hello | _filter_xfs_io ln $SCRATCH_MNT/hello $SCRATCH_MNT/mydir/hello_2 # Add some subdirectories and new files and links to them. This is to verify # that after fsyncing our top level directory 'mydir', all the subdirectories # and their files/links are registered in the fsync log and exist after the # fsync log is replayed. mkdir -p $SCRATCH_MNT/mydir/x/y/z ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/foo_y_link ln $SCRATCH_MNT/foo $SCRATCH_MNT/mydir/x/y/z/foo_z_link touch $SCRATCH_MNT/mydir/x/y/z/qwerty # Now fsync only our top directory. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/mydir # And fsync now our new file named 'hello', just to verify later that it has # the expected content and that the previous fsync on the directory 'mydir' had # no bad influence on this fsync. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/hello # Simulate a crash/power loss. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # Verify the content of our file 'foo' remains the same as before, 8192 bytes, # all with the value 0xaa. echo "File 'foo' content after log replay:" od -t x1 $SCRATCH_MNT/foo # Remove the first name of our inode. Because of the directory fsync bug, the # inode's link count was 1 instead of 5, so removing the 'foo' name ended up # deleting the inode and the other names became stale directory entries (still # visible to applications). Attempting to remove or access the remaining # dentries pointing to that inode resulted in stale file handle errors and # made it impossible to remove the parent directories since it was impossible # for them to become empty. echo "file 'foo' link count after log replay: $(stat -c %h $SCRATCH_MNT/foo)" rm -f $SCRATCH_MNT/foo # Now verify that all files, links and directories created before fsyncing our # directory exist after the fsync log was replayed. [ -f $SCRATCH_MNT/mydir/foo_2 ] || echo "Link mydir/foo_2 is missing" [ -f $SCRATCH_MNT/mydir/foo_3 ] || echo "Link mydir/foo_3 is missing" [ -f $SCRATCH_MNT/hello ] || echo "File hello is missing" [ -f $SCRATCH_MNT/mydir/hello_2 ] || echo "Link mydir/hello_2 is missing" [ -f $SCRATCH_MNT/mydir/x/y/foo_y_link ] || \ echo "Link mydir/x/y/foo_y_link is missing" [ -f $SCRATCH_MNT/mydir/x/y/z/foo_z_link ] || \ echo "Link mydir/x/y/z/foo_z_link is missing" [ -f $SCRATCH_MNT/mydir/x/y/z/qwerty ] || \ echo "File mydir/x/y/z/qwerty is missing" # We expect our file here to have a size of 64Kb and all the bytes having the # value 0xff. echo "file 'hello' content after log replay:" od -t x1 $SCRATCH_MNT/hello # Now remove all files/links, under our test directory 'mydir', and verify we # can remove all the directories. rm -f $SCRATCH_MNT/mydir/x/y/z/* rmdir $SCRATCH_MNT/mydir/x/y/z rm -f $SCRATCH_MNT/mydir/x/y/* rmdir $SCRATCH_MNT/mydir/x/y rmdir $SCRATCH_MNT/mydir/x rm -f $SCRATCH_MNT/mydir/* rmdir $SCRATCH_MNT/mydir # An fsck, run by the fstests framework everytime a test finishes, also detected # the inconsistency and printed the following error message: # # root 5 inode 257 errors 2001, no inode item, link count wrong # unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref # unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref status=0 exit The expected golden output for the test is: wrote 8192/8192 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) wrote 65536/65536 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) File 'foo' content after log replay: 0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa * 0020000 file 'foo' link count after log replay: 5 file 'hello' content after log replay: 0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff * 0200000 Which is the output after this patch and when running the test against ext3/4, xfs, f2fs, reiserfs or nilfs2. Without this patch, the test's output is: wrote 8192/8192 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) wrote 65536/65536 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) File 'foo' content after log replay: 0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa * 0020000 file 'foo' link count after log replay: 1 Link mydir/foo_2 is missing Link mydir/foo_3 is missing Link mydir/x/y/foo_y_link is missing Link mydir/x/y/z/foo_z_link is missing File mydir/x/y/z/qwerty is missing file 'hello' content after log replay: 0000000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff * 0200000 rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y/z': No such file or directory rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x/y': No such file or directory rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/x': No such file or directory rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_2': Stale file handle rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/mydir/foo_3': Stale file handle rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/mydir': Directory not empty Fsck, without this fix, also complains about the wrong link count: root 5 inode 257 errors 2001, no inode item, link count wrong unresolved ref dir 258 index 2 namelen 5 name foo_2 filetype 1 errors 4, no inode ref unresolved ref dir 258 index 3 namelen 5 name foo_3 filetype 1 errors 4, no inode ref So fix this by logging the inodes that the dentries point to when fsyncing a directory. A test case for xfstests follows. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-19Btrfs: fix data corruption after fast fsync and writeback errorFilipe Manana1-0/+2
When we do a fast fsync, we start all ordered operations and then while they're running in parallel we visit the list of modified extent maps and construct their matching file extent items and write them to the log btree. After that, in btrfs_sync_log() we wait for all the ordered operations to finish (via btrfs_wait_logged_extents). The problem with this is that we were completely ignoring errors that can happen in the extent write path, such as -ENOSPC, a temporary -ENOMEM or -EIO errors for example. When such error happens, it means we have parts of the on disk extent that weren't written to, and so we end up logging file extent items that point to these extents that contain garbage/random data - so after a crash/reboot plus log replay, we get our inode's metadata pointing to those extents. This worked in contrast with the full (non-fast) fsync path, where we start all ordered operations, wait for them to finish and then write to the log btree. In this path, after each ordered operation completes we check if it's flagged with an error (BTRFS_ORDERED_IOERR) and return -EIO if so (via btrfs_wait_ordered_range). So if an error happens with any ordered operation, just return a -EIO error to userspace, so that it knows that not all of its previous writes were durably persisted and the application can take proper action (like redo the writes for e.g.) - and definitely not leave any file extent items in the log refer to non fully written extents. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-09Btrfs: fix fsync data loss after a ranged fsyncFilipe Manana1-0/+2
While we're doing a full fsync (when the inode has the flag BTRFS_INODE_NEEDS_FULL_SYNC set) that is ranged too (covers only a portion of the file), we might have ordered operations that are started before or while we're logging the inode and that fall outside the fsync range. Therefore when a full ranged fsync finishes don't remove every extent map from the list of modified extent maps - as for some of them, that fall outside our fsync range, their respective ordered operation hasn't finished yet, meaning the corresponding file extent item wasn't inserted into the fs/subvol tree yet and therefore we didn't log it, and we must let the next fast fsync (one that checks only the modified list) see this extent map and log a matching file extent item to the log btree and wait for its ordered operation to finish (if it's still ongoing). A test case for xfstests follows. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-06-10Btrfs: use helpers for last_trans_log_full_commit instead of opencodeMiao Xie1-0/+16
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-03-10Btrfs: just wait or commit our own log sub-transactionMiao Xie1-0/+2
We might commit the log sub-transaction which didn't contain the metadata we logged. It was because we didn't record the log transid and just select the current log sub-transaction to commit, but the right one might be committed by the other task already. Actually, we needn't do anything and it is safe that we go back directly in this case. This patch improves the log sync by the above idea. We record the transid of the log sub-transaction in which we log the metadata, and the transid of the log sub-transaction we have committed. If the committed transid is >= the transid we record when logging the metadata, we just go back. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com>
2014-03-10Btrfs: fix skipped error handle when log sync failedMiao Xie1-2/+14
It is possible that many tasks sync the log tree at the same time, but only one task can do the sync work, the others will wait for it. But those wait tasks didn't get the result of the log sync, and returned 0 when they ended the wait. It caused those tasks skipped the error handle, and the serious problem was they told the users the file sync succeeded but in fact they failed. This patch fixes this problem by introducing a log context structure, we insert it into the a global list. When the sync fails, we will set the error number of every log context in the list, then the waiting tasks get the error number of the log context and handle the error if need. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fb.com>
2013-05-06btrfs: make static code static & remove dead codeEric Sandeen1-3/+0
Big patch, but all it does is add statics to functions which are in fact static, then remove the associated dead-code fallout. removed functions: btrfs_iref_to_path() __btrfs_lookup_delayed_deletion_item() __btrfs_search_delayed_insertion_item() __btrfs_search_delayed_deletion_item() find_eb_for_page() btrfs_find_block_group() range_straddles_pages() extent_range_uptodate() btrfs_file_extent_length() btrfs_scrub_cancel_devid() btrfs_start_transaction_lflush() btrfs_print_tree() is left because it is used for debugging. btrfs_start_transaction_lflush() and btrfs_reada_detach() are left for symmetry. ulist.c functions are left, another patch will take care of those. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-03-22btrfs: return void in functions without error conditionsJeff Mahoney1-1/+1
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
2011-05-04btrfs: remove unused function prototypesDavid Sterba1-1/+0
function prototypes without a body Signed-off-by: David Sterba <dsterba@suse.cz>
2010-05-25Btrfs: Metadata ENOSPC handling for tree logYan, Zheng1-0/+2
Previous patches make the allocater return -ENOSPC if there is no unreserved free metadata space. This patch updates tree log code and various other places to propagate/handle the ENOSPC error. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-10-13Btrfs: avoid tree log commit when there are no changesChris Mason1-0/+3
rpm has a habit of running fdatasync when the file hasn't changed. We already detect if a file hasn't been changed in the current transaction but it might have been sent to the tree-log in this transaction and not changed since the last call to fsync. In this case, we want to avoid a tree log sync, which includes a number of synchronous writes and barriers. This commit extends the existing tracking of the last transaction to change a file to also track the last sub-transaction. The end result is that rpm -ivh and -Uvh are roughly twice as fast, and on par with ext3. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-24Btrfs: tree logging unlink/rename fixesChris Mason1-5/+12
The tree logging code allows individual files or directories to be logged without including operations on other files and directories in the FS. It tries to commit the minimal set of changes to disk in order to fsync the single file or directory that was sent to fsync or O_SYNC. The tree logging code was allowing files and directories to be unlinked if they were part of a rename operation where only one directory in the rename was in the fsync log. This patch adds a few new rules to the tree logging. 1) on rename or unlink, if the inode being unlinked isn't in the fsync log, we must force a full commit before doing an fsync of the directory where the unlink was done. The commit isn't done during the unlink, but it is forced the next time we try to log the parent directory. Solution: record transid of last unlink/rename per directory when the directory wasn't already logged. For renames this is only done when renaming to a different directory. mkdir foo/some_dir normal commit rename foo/some_dir foo2/some_dir mkdir foo/some_dir fsync foo/some_dir/some_file The fsync above will unlink the original some_dir without recording it in its new location (foo2). After a crash, some_dir will be gone unless the fsync of some_file forces a full commit 2) we must log any new names for any file or dir that is in the fsync log. This way we make sure not to lose files that are unlinked during the same transaction. 2a) we must log any new names for any file or dir during rename when the directory they are being removed from was logged. 2a is actually the more important variant. Without the extra logging a crash might unlink the old name without recreating the new one 3) after a crash, we must go through any directories with a link count of zero and redo the rm -rf mkdir f1/foo normal commit rm -rf f1/foo fsync(f1) The directory f1 was fully removed from the FS, but fsync was never called on f1, only its parent dir. After a crash the rm -rf must be replayed. This must be able to recurse down the entire directory tree. The inode link count fixup code takes care of the ugly details. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25Btrfs: Add a write ahead tree log to optimize synchronous operationsChris Mason1-0/+41
File syncs and directory syncs are optimized by copying their items into a special (copy-on-write) log tree. There is one log tree per subvolume and the btrfs super block points to a tree of log tree roots. After a crash, items are copied out of the log tree and back into the subvolume. See tree-log.c for all the details. Signed-off-by: Chris Mason <chris.mason@oracle.com>