summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/x86.c
AgeCommit message (Collapse)AuthorFilesLines
2017-09-26x86/fpu: Rename fpu__activate_curr() to fpu__initialize()Ingo Molnar1-1/+1
Rename this function to better express that it's all about initializing the FPU state of a task which goes hand in hand with the fpu::initialized field. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yu-cheng Yu <yu-cheng.yu@intel.com> Link: http://lkml.kernel.org/r/20170923130016.21448-33-mingo@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-14KVM: async_pf: Fix #DF due to inject "Page not Present" and "Page Ready" ↵Wanpeng Li1-9/+28
exceptions simultaneously qemu-system-x86-8600 [004] d..1 7205.687530: kvm_entry: vcpu 2 qemu-system-x86-8600 [004] .... 7205.687532: kvm_exit: reason EXCEPTION_NMI rip 0xffffffffa921297d info ffffeb2c0e44e018 80000b0e qemu-system-x86-8600 [004] .... 7205.687532: kvm_page_fault: address ffffeb2c0e44e018 error_code 0 qemu-system-x86-8600 [004] .... 7205.687620: kvm_try_async_get_page: gva = 0xffffeb2c0e44e018, gfn = 0x427e4e qemu-system-x86-8600 [004] .N.. 7205.687628: kvm_async_pf_not_present: token 0x8b002 gva 0xffffeb2c0e44e018 kworker/4:2-7814 [004] .... 7205.687655: kvm_async_pf_completed: gva 0xffffeb2c0e44e018 address 0x7fcc30c4e000 qemu-system-x86-8600 [004] .... 7205.687703: kvm_async_pf_ready: token 0x8b002 gva 0xffffeb2c0e44e018 qemu-system-x86-8600 [004] d..1 7205.687711: kvm_entry: vcpu 2 After running some memory intensive workload in guest, I catch the kworker which completes the GUP too quickly, and queues an "Page Ready" #PF exception after the "Page not Present" exception before the next vmentry as the above trace which will result in #DF injected to guest. This patch fixes it by clearing the queue for "Page not Present" if "Page Ready" occurs before the next vmentry since the GUP has already got the required page and shadow page table has already been fixed by "Page Ready" handler. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Fixes: 7c90705bf2a3 ("KVM: Inject asynchronous page fault into a PV guest if page is swapped out.") [Changed indentation and added clearing of injected. - Radim] Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-09-14KVM: X86: Don't block vCPU if there is pending exceptionWanpeng Li1-0/+3
Don't block vCPU if there is pending exception. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-09-13KVM: Add struct kvm_vcpu pointer parameter to get_enable_apicv()Suravee Suthikulpanit1-1/+1
Modify struct kvm_x86_ops.arch.apicv_active() to take struct kvm_vcpu pointer as parameter in preparation to subsequent changes. Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-09-13KVM: x86: Fix immediate_exit handling for uninitialized APJan H. Schönherr1-0/+4
When user space sets kvm_run->immediate_exit, KVM is supposed to return quickly. However, when a vCPU is in KVM_MP_STATE_UNINITIALIZED, the value is not considered and the vCPU blocks. Fix that oversight. Fixes: 460df4c1fc7c008 ("KVM: race-free exit from KVM_RUN without POSIX signals") Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-09-13KVM: x86: Fix handling of pending signal on uninitialized APJan H. Schönherr1-0/+5
KVM API says that KVM_RUN will return with -EINTR when a signal is pending. However, if a vCPU is in KVM_MP_STATE_UNINITIALIZED, then the return value is unconditionally -EAGAIN. Copy over some code from vcpu_run(), so that the case of a pending signal results in the expected return value. Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-09-09Merge tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds1-86/+127
Pull KVM updates from Radim Krčmář: "First batch of KVM changes for 4.14 Common: - improve heuristic for boosting preempted spinlocks by ignoring VCPUs in user mode ARM: - fix for decoding external abort types from guests - added support for migrating the active priority of interrupts when running a GICv2 guest on a GICv3 host - minor cleanup PPC: - expose storage keys to userspace - merge kvm-ppc-fixes with a fix that missed 4.13 because of vacations - fixes s390: - merge of kvm/master to avoid conflicts with additional sthyi fixes - wire up the no-dat enhancements in KVM - multiple epoch facility (z14 feature) - Configuration z/Architecture Mode - more sthyi fixes - gdb server range checking fix - small code cleanups x86: - emulate Hyper-V TSC frequency MSRs - add nested INVPCID - emulate EPTP switching VMFUNC - support Virtual GIF - support 5 level page tables - speedup nested VM exits by packing byte operations - speedup MMIO by using hardware provided physical address - a lot of fixes and cleanups, especially nested" * tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (67 commits) KVM: arm/arm64: Support uaccess of GICC_APRn KVM: arm/arm64: Extract GICv3 max APRn index calculation KVM: arm/arm64: vITS: Drop its_ite->lpi field KVM: arm/arm64: vgic: constify seq_operations and file_operations KVM: arm/arm64: Fix guest external abort matching KVM: PPC: Book3S HV: Fix memory leak in kvm_vm_ioctl_get_htab_fd KVM: s390: vsie: cleanup mcck reinjection KVM: s390: use WARN_ON_ONCE only for checking KVM: s390: guestdbg: fix range check KVM: PPC: Book3S HV: Report storage key support to userspace KVM: PPC: Book3S HV: Fix case where HDEC is treated as 32-bit on POWER9 KVM: PPC: Book3S HV: Fix invalid use of register expression KVM: PPC: Book3S HV: Fix H_REGISTER_VPA VPA size validation KVM: PPC: Book3S HV: Fix setting of storage key in H_ENTER KVM: PPC: e500mc: Fix a NULL dereference KVM: PPC: e500: Fix some NULL dereferences on error KVM: PPC: Book3S HV: Protect updates to spapr_tce_tables list KVM: s390: we are always in czam mode KVM: s390: expose no-DAT to guest and migration support KVM: s390: sthyi: remove invalid guest write access ...
2017-09-08Merge branch 'kvm-ppc-fixes' of ↵Radim Krčmář1-3/+14
git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc This fix was intended for 4.13, but didn't get in because both maintainers were on vacation. Paul Mackerras: "It adds mutual exclusion between list_add_rcu and list_del_rcu calls on the kvm->arch.spapr_tce_tables list. Without this, userspace could potentially trigger corruption of the list and cause a host crash or worse."
2017-09-04Merge branch 'x86-mm-for-linus' of ↵Linus Torvalds1-1/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 mm changes from Ingo Molnar: "PCID support, 5-level paging support, Secure Memory Encryption support The main changes in this cycle are support for three new, complex hardware features of x86 CPUs: - Add 5-level paging support, which is a new hardware feature on upcoming Intel CPUs allowing up to 128 PB of virtual address space and 4 PB of physical RAM space - a 512-fold increase over the old limits. (Supercomputers of the future forecasting hurricanes on an ever warming planet can certainly make good use of more RAM.) Many of the necessary changes went upstream in previous cycles, v4.14 is the first kernel that can enable 5-level paging. This feature is activated via CONFIG_X86_5LEVEL=y - disabled by default. (By Kirill A. Shutemov) - Add 'encrypted memory' support, which is a new hardware feature on upcoming AMD CPUs ('Secure Memory Encryption', SME) allowing system RAM to be encrypted and decrypted (mostly) transparently by the CPU, with a little help from the kernel to transition to/from encrypted RAM. Such RAM should be more secure against various attacks like RAM access via the memory bus and should make the radio signature of memory bus traffic harder to intercept (and decrypt) as well. This feature is activated via CONFIG_AMD_MEM_ENCRYPT=y - disabled by default. (By Tom Lendacky) - Enable PCID optimized TLB flushing on newer Intel CPUs: PCID is a hardware feature that attaches an address space tag to TLB entries and thus allows to skip TLB flushing in many cases, even if we switch mm's. (By Andy Lutomirski) All three of these features were in the works for a long time, and it's coincidence of the three independent development paths that they are all enabled in v4.14 at once" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (65 commits) x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y) x86/mm: Use pr_cont() in dump_pagetable() x86/mm: Fix SME encryption stack ptr handling kvm/x86: Avoid clearing the C-bit in rsvd_bits() x86/CPU: Align CR3 defines x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages acpi, x86/mm: Remove encryption mask from ACPI page protection type x86/mm, kexec: Fix memory corruption with SME on successive kexecs x86/mm/pkeys: Fix typo in Documentation/x86/protection-keys.txt x86/mm/dump_pagetables: Speed up page tables dump for CONFIG_KASAN=y x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y x86/mm: Allow userspace have mappings above 47-bit x86/mm: Prepare to expose larger address space to userspace x86/mpx: Do not allow MPX if we have mappings above 47-bit x86/mm: Rename tasksize_32bit/64bit to task_size_32bit/64bit() x86/xen: Redefine XEN_ELFNOTE_INIT_P2M using PUD_SIZE * PTRS_PER_PUD x86/mm/dump_pagetables: Fix printout of p4d level x86/mm/dump_pagetables: Generalize address normalization x86/boot: Fix memremap() related build failure ...
2017-09-01KVM: update to new mmu_notifier semantic v2Jérôme Glisse1-11/+0
Calls to mmu_notifier_invalidate_page() were replaced by calls to mmu_notifier_invalidate_range() and are now bracketed by calls to mmu_notifier_invalidate_range_start()/end() Remove now useless invalidate_page callback. Changed since v1 (Linus Torvalds) - remove now useless kvm_arch_mmu_notifier_invalidate_page() Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Tested-by: Mike Galbraith <efault@gmx.de> Tested-by: Adam Borowski <kilobyte@angband.pl> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: kvm@vger.kernel.org Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-26Merge branch 'linus' into x86/mm to pick up fixes and to fix conflictsIngo Molnar1-10/+14
Conflicts: arch/x86/kernel/head64.c arch/x86/mm/mmap.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-25KVM, pkeys: do not use PKRU value in vcpu->arch.guest_fpu.statePaolo Bonzini1-3/+14
The host pkru is restored right after vcpu exit (commit 1be0e61), so KVM_GET_XSAVE will return the host PKRU value instead. Fix this by using the guest PKRU explicitly in fill_xsave and load_xsave. This part is based on a patch by Junkang Fu. The host PKRU data may also not match the value in vcpu->arch.guest_fpu.state, because it could have been changed by userspace since the last time it was saved, so skip loading it in kvm_load_guest_fpu. Reported-by: Junkang Fu <junkang.fjk@alibaba-inc.com> Cc: Yang Zhang <zy107165@alibaba-inc.com> Fixes: 1be0e61c1f255faaeab04a390e00c8b9b9042870 Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-24KVM: X86: Fix loss of exception which has not yet been injectedWanpeng Li1-26/+64
vmx_complete_interrupts() assumes that the exception is always injected, so it can be dropped by kvm_clear_exception_queue(). However, an exception cannot be injected immediately if it is: 1) originally destined to a nested guest; 2) trapped to cause a vmexit; 3) happening right after VMLAUNCH/VMRESUME, i.e. when nested_run_pending is true. This patch applies to exceptions the same algorithm that is used for NMIs, replacing exception.reinject with "exception.injected" (equivalent to nmi_injected). exception.pending now represents an exception that is queued and whose side effects (e.g., update RFLAGS.RF or DR7) have not been applied yet. If exception.pending is true, the exception might result in a nested vmexit instead, too (in which case the side effects must not be applied). exception.injected instead represents an exception that is going to be injected into the guest at the next vmentry. Reported-by: Radim Krčmář <rkrcmar@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-24KVM: MMU: Expose the LA57 feature to VM.Yu Zhang1-2/+5
This patch exposes 5 level page table feature to the VM. At the same time, the canonical virtual address checking is extended to support both 48-bits and 57-bits address width. Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-24KVM: MMU: check guest CR3 reserved bits based on its physical address width.Yu Zhang1-4/+4
Currently, KVM uses CR3_L_MODE_RESERVED_BITS to check the reserved bits in CR3. Yet the length of reserved bits in guest CR3 should be based on the physical address width exposed to the VM. This patch changes CR3 check logic to calculate the reserved bits at runtime. Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-24KVM: x86: Add return value to kvm_cpuid().Yu Zhang1-3/+3
Return false in kvm_cpuid() when it fails to find the cpuid entry. Also, this routine(and its caller) is optimized with a new argument - check_limit, so that the check_cpuid_limit() fall back can be avoided. Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-18KVM: x86: Avoid guest page table walk when gpa_available is setBrijesh Singh1-15/+9
When a guest causes a page fault which requires emulation, the vcpu->arch.gpa_available flag is set to indicate that cr2 contains a valid GPA. Currently, emulator_read_write_onepage() makes use of gpa_available flag to avoid a guest page walk for a known MMIO regions. Lets not limit the gpa_available optimization to just MMIO region. The patch extends the check to avoid page walk whenever gpa_available flag is set. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> [Fix EPT=0 according to Wanpeng Li's fix, plus ensure VMX also uses the new code. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> [Moved "ret < 0" to the else brach, as per David's review. - Radim] Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-08-11kvm: x86: Disallow illegal IA32_APIC_BASE MSR valuesJim Mattson1-6/+8
Host-initiated writes to the IA32_APIC_BASE MSR do not have to follow local APIC state transition constraints, but the value written must be valid. Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-10KVM: X86: Fix residual mmio emulation request to userspaceWanpeng Li1-0/+1
Reported by syzkaller: The kvm-intel.unrestricted_guest=0 WARNING: CPU: 5 PID: 1014 at /home/kernel/data/kvm/arch/x86/kvm//x86.c:7227 kvm_arch_vcpu_ioctl_run+0x38b/0x1be0 [kvm] CPU: 5 PID: 1014 Comm: warn_test Tainted: G W OE 4.13.0-rc3+ #8 RIP: 0010:kvm_arch_vcpu_ioctl_run+0x38b/0x1be0 [kvm] Call Trace: ? put_pid+0x3a/0x50 ? rcu_read_lock_sched_held+0x79/0x80 ? kmem_cache_free+0x2f2/0x350 kvm_vcpu_ioctl+0x340/0x700 [kvm] ? kvm_vcpu_ioctl+0x340/0x700 [kvm] ? __fget+0xfc/0x210 do_vfs_ioctl+0xa4/0x6a0 ? __fget+0x11d/0x210 SyS_ioctl+0x79/0x90 entry_SYSCALL_64_fastpath+0x23/0xc2 ? __this_cpu_preempt_check+0x13/0x20 The syszkaller folks reported a residual mmio emulation request to userspace due to vm86 fails to emulate inject real mode interrupt(fails to read CS) and incurs a triple fault. The vCPU returns to userspace with vcpu->mmio_needed == true and KVM_EXIT_SHUTDOWN exit reason. However, the syszkaller testcase constructs several threads to launch the same vCPU, the thread which lauch this vCPU after the thread whichs get the vcpu->mmio_needed == true and KVM_EXIT_SHUTDOWN will trigger the warning. #define _GNU_SOURCE #include <pthread.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/wait.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/mman.h> #include <fcntl.h> #include <unistd.h> #include <linux/kvm.h> #include <stdio.h> int kvmcpu; struct kvm_run *run; void* thr(void* arg) { int res; res = ioctl(kvmcpu, KVM_RUN, 0); printf("ret1=%d exit_reason=%d suberror=%d\n", res, run->exit_reason, run->internal.suberror); return 0; } void test() { int i, kvm, kvmvm; pthread_t th[4]; kvm = open("/dev/kvm", O_RDWR); kvmvm = ioctl(kvm, KVM_CREATE_VM, 0); kvmcpu = ioctl(kvmvm, KVM_CREATE_VCPU, 0); run = (struct kvm_run*)mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_SHARED, kvmcpu, 0); srand(getpid()); for (i = 0; i < 4; i++) { pthread_create(&th[i], 0, thr, 0); usleep(rand() % 10000); } for (i = 0; i < 4; i++) pthread_join(th[i], 0); } int main() { for (;;) { int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { test(); exit(0); } int status; while (waitpid(pid, &status, __WALL) != pid) {} } return 0; } This patch fixes it by resetting the vcpu->mmio_needed once we receive the triple fault to avoid the residue. Reported-by: Dmitry Vyukov <dvyukov@google.com> Tested-by: Dmitry Vyukov <dvyukov@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-08KVM: X86: implement the logic for spinlock optimizationLongpeng(Mike)1-1/+6
get_cpl requires vcpu_load, so we must cache the result (whether the vcpu was preempted when its cpl=0) in kvm_vcpu_arch. Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-08KVM: add spinlock optimization frameworkLongpeng(Mike)1-0/+5
If a vcpu exits due to request a user mode spinlock, then the spinlock-holder may be preempted in user mode or kernel mode. (Note that not all architectures trap spin loops in user mode, only AMD x86 and ARM/ARM64 currently do). But if a vcpu exits in kernel mode, then the holder must be preempted in kernel mode, so we should choose a vcpu in kernel mode as a more likely candidate for the lock holder. This introduces kvm_arch_vcpu_in_kernel() to decide whether the vcpu is in kernel-mode when it's preempted. kvm_vcpu_on_spin's new argument says the same of the spinning VCPU. Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-07KVM: x86: use general helpers for some cpuid manipulationRadim Krčmář1-12/+2
Add guest_cpuid_clear() and use it instead of kvm_find_cpuid_entry(). Also replace some uses of kvm_find_cpuid_entry() with guest_cpuid_has(). Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-07KVM: x86: generalize guest_cpuid_has_ helpersRadim Krčmář1-18/+20
This patch turns guest_cpuid_has_XYZ(cpuid) into guest_cpuid_has(cpuid, X86_FEATURE_XYZ), which gets rid of many very similar helpers. When seeing a X86_FEATURE_*, we can know which cpuid it belongs to, but this information isn't in common code, so we recreate it for KVM. Add some BUILD_BUG_ONs to make sure that it runs nicely. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-07KVM: hyperv: support HV_X64_MSR_TSC_FREQUENCY and HV_X64_MSR_APIC_FREQUENCYLadi Prosek1-0/+1
It has been experimentally confirmed that supporting these two MSRs is one of the necessary conditions for nested Hyper-V to use the TSC page. Modern Windows guests are noticeably slower when they fall back to reading timestamps from the HV_X64_MSR_TIME_REF_COUNT MSR instead of using the TSC page. The newly supported MSRs are advertised with the AccessFrequencyRegs partition privilege flag and CPUID.40000003H:EDX[8] "Support for determining timer frequencies is available" (both outside of the scope of this KVM patch). Reviewed-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Ladi Prosek <lprosek@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-02KVM: X86: init irq->level in kvm_pv_kick_cpu_opLongpeng(Mike)1-0/+1
'lapic_irq' is a local variable and its 'level' field isn't initialized, so 'level' is random, it doesn't matter but makes UBSAN unhappy: UBSAN: Undefined behaviour in .../lapic.c:... load of value 10 is not a valid value for type '_Bool' ... Call Trace: [<ffffffff81f030b6>] dump_stack+0x1e/0x20 [<ffffffff81f03173>] ubsan_epilogue+0x12/0x55 [<ffffffff81f03b96>] __ubsan_handle_load_invalid_value+0x118/0x162 [<ffffffffa1575173>] kvm_apic_set_irq+0xc3/0xf0 [kvm] [<ffffffffa1575b20>] kvm_irq_delivery_to_apic_fast+0x450/0x910 [kvm] [<ffffffffa15858ea>] kvm_irq_delivery_to_apic+0xfa/0x7a0 [kvm] [<ffffffffa1517f4e>] kvm_emulate_hypercall+0x62e/0x760 [kvm] [<ffffffffa113141a>] handle_vmcall+0x1a/0x30 [kvm_intel] [<ffffffffa114e592>] vmx_handle_exit+0x7a2/0x1fa0 [kvm_intel] ... Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-08-02KVM: X86: Fix loss of pending INIT due to raceWanpeng Li1-8/+11
When SMP VM start, AP may lost INIT because of receiving INIT between kvm_vcpu_ioctl_x86_get/set_vcpu_events. vcpu 0 vcpu 1 kvm_vcpu_ioctl_x86_get_vcpu_events events->smi.latched_init = 0 send INIT to vcpu1 set vcpu1's pending_events kvm_vcpu_ioctl_x86_set_vcpu_events if (events->smi.latched_init == 0) clear INIT in pending_events This patch fixes it by just update SMM related flags if we are in SMM. Thanks Peng Hao for the report and original commit message. Reported-by: Peng Hao <peng.hao2@zte.com.cn> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-07-26KVM: x86: do mask out upper bits of PAE CR3Paolo Bonzini1-2/+2
This reverts the change of commit f85c758dbee54cc3612a6e873ef7cecdb66ebee5, as the behavior it modified was intended. The VM is running in 32-bit PAE mode, and Table 4-7 of the Intel manual says: Table 4-7. Use of CR3 with PAE Paging Bit Position(s) Contents 4:0 Ignored 31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for linear-address translation 63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture) To placate the static checker, write the mask explicitly as an unsigned long constant instead of using a 32-bit unsigned constant. Cc: Dan Carpenter <dan.carpenter@oracle.com> Fixes: f85c758dbee54cc3612a6e873ef7cecdb66ebee5 Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-07-19KVM: x86: masking out upper bitsDan Carpenter1-2/+2
kvm_read_cr3() returns an unsigned long and gfn is a u64. We intended to mask out the bottom 5 bits but because of the type issue we mask the top 32 bits as well. I don't know if this is a real problem, but it causes static checker warnings. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-07-18kvm/x86/svm: Support Secure Memory Encryption within KVMTom Lendacky1-1/+2
Update the KVM support to work with SME. The VMCB has a number of fields where physical addresses are used and these addresses must contain the memory encryption mask in order to properly access the encrypted memory. Also, use the memory encryption mask when creating and using the nested page tables. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/89146eccfa50334409801ff20acd52a90fb5efcf.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-14kvm: x86: hyperv: make VP_INDEX managed by userspaceRoman Kagan1-0/+3
Hyper-V identifies vCPUs by Virtual Processor Index, which can be queried via HV_X64_MSR_VP_INDEX msr. It is defined by the spec as a sequential number which can't exceed the maximum number of vCPUs per VM. APIC ids can be sparse and thus aren't a valid replacement for VP indices. Current KVM uses its internal vcpu index as VP_INDEX. However, to make it predictable and persistent across VM migrations, the userspace has to control the value of VP_INDEX. This patch achieves that, by storing vp_index explicitly on vcpu, and allowing HV_X64_MSR_VP_INDEX to be set from the host side. For compatibility it's initialized to KVM vcpu index. Also a few variables are renamed to make clear distinction betweed this Hyper-V vp_index and KVM vcpu_id (== APIC id). Besides, a new capability, KVM_CAP_HYPERV_VP_INDEX, is added to allow the userspace to skip attempting msr writes where unsupported, to avoid spamming error logs. Signed-off-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-07-14KVM: async_pf: Let guest support delivery of async_pf from guest modeWanpeng Li1-2/+3
Adds another flag bit (bit 2) to MSR_KVM_ASYNC_PF_EN. If bit 2 is 1, async page faults are delivered to L1 as #PF vmexits; if bit 2 is 0, kvm_can_do_async_pf returns 0 if in guest mode. This is similar to what svm.c wanted to do all along, but it is only enabled for Linux as L1 hypervisor. Foreign hypervisors must never receive async page faults as vmexits, because they'd probably be very confused about that. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-07-14KVM: async_pf: Force a nested vmexit if the injected #PF is async_pfWanpeng Li1-1/+8
Add an nested_apf field to vcpu->arch.exception to identify an async page fault, and constructs the expected vm-exit information fields. Force a nested VM exit from nested_vmx_check_exception() if the injected #PF is async page fault. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-07-14KVM: x86: Simplify kvm_x86_ops->queue_exception parameter listWanpeng Li1-4/+1
This patch removes all arguments except the first in kvm_x86_ops->queue_exception since they can extract the arguments from vcpu->arch.exception themselves. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-07-13kvm: x86: hyperv: add KVM_CAP_HYPERV_SYNIC2Roman Kagan1-1/+6
There is a flaw in the Hyper-V SynIC implementation in KVM: when message page or event flags page is enabled by setting the corresponding msr, KVM zeroes it out. This is problematic because on migration the corresponding MSRs are loaded on the destination, so the content of those pages is lost. This went unnoticed so far because the only user of those pages was in-KVM hyperv synic timers, which could continue working despite that zeroing. Newer QEMU uses those pages for Hyper-V VMBus implementation, and zeroing them breaks the migration. Besides, in newer QEMU the content of those pages is fully managed by QEMU, so zeroing them is undesirable even when writing the MSRs from the guest side. To support this new scheme, introduce a new capability, KVM_CAP_HYPERV_SYNIC2, which, when enabled, makes sure that the synic pages aren't zeroed out in KVM. Signed-off-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-07-13KVM: x86: make backwards_tsc_observed a per-VM variableLadi Prosek1-4/+2
The backwards_tsc_observed global introduced in commit 16a9602 is never reset to false. If a VM happens to be running while the host is suspended (a common source of the TSC jumping backwards), master clock will never be enabled again for any VM. In contrast, if no VM is running while the host is suspended, master clock is unaffected. This is inconsistent and unnecessarily strict. Let's track the backwards_tsc_observed variable separately and let each VM start with a clean slate. Real world impact: My Windows VMs get slower after my laptop undergoes a suspend/resume cycle. The only way to get the perf back is unloading and reloading the kvm module. Signed-off-by: Ladi Prosek <lprosek@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-07-12KVM: x86: update master clock before computing kvmclock_offsetRadim Krčmář1-1/+7
kvm master clock usually has a different frequency than the kernel boot clock. This is not a problem until the master clock is updated; update uses the current kernel boot clock to compute new kvm clock, which erases any kvm clock cycles that might have built up due to frequency difference over a long period. KVM_SET_CLOCK is one of places where we can safely update master clock as the guest-visible clock is going to be shifted anyway. The problem with current code is that it updates the kvm master clock after updating the offset. If the master clock was enabled before calling KVM_SET_CLOCK, then it might have built up a significant delta from kernel boot clock. In the worst case, the time set by userspace would be shifted by so much that it couldn't have been set at any point during KVM_SET_CLOCK. To fix this, move kvm_gen_update_masterclock() before computing kvmclock_offset, which means that the master clock and kernel boot clock will be sufficiently close together. Another solution would be to replace get_kvmclock_ns() with "ktime_get_boot_ns() + ka->kvmclock_offset", which is marginally more accurate, but would break symmetry with KVM_GET_CLOCK. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-07-07Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds1-7/+7
Pull KVM updates from Paolo Bonzini: "PPC: - Better machine check handling for HV KVM - Ability to support guests with threads=2, 4 or 8 on POWER9 - Fix for a race that could cause delayed recognition of signals - Fix for a bug where POWER9 guests could sleep with interrupts pending. ARM: - VCPU request overhaul - allow timer and PMU to have their interrupt number selected from userspace - workaround for Cavium erratum 30115 - handling of memory poisonning - the usual crop of fixes and cleanups s390: - initial machine check forwarding - migration support for the CMMA page hinting information - cleanups and fixes x86: - nested VMX bugfixes and improvements - more reliable NMI window detection on AMD - APIC timer optimizations Generic: - VCPU request overhaul + documentation of common code patterns - kvm_stat improvements" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits) Update my email address kvm: vmx: allow host to access guest MSR_IA32_BNDCFGS x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12 kvm: x86: mmu: allow A/D bits to be disabled in an mmu x86: kvm: mmu: make spte mmio mask more explicit x86: kvm: mmu: dead code thanks to access tracking KVM: PPC: Book3S: Fix typo in XICS-on-XIVE state saving code KVM: PPC: Book3S HV: Close race with testing for signals on guest entry KVM: PPC: Book3S HV: Simplify dynamic micro-threading code KVM: x86: remove ignored type attribute KVM: LAPIC: Fix lapic timer injection delay KVM: lapic: reorganize restart_apic_timer KVM: lapic: reorganize start_hv_timer kvm: nVMX: Check memory operand to INVVPID KVM: s390: Inject machine check into the nested guest KVM: s390: Inject machine check into the guest tools/kvm_stat: add new interactive command 'b' tools/kvm_stat: add new command line switch '-i' tools/kvm_stat: fix error on interactive command 'g' KVM: SVM: suppress unnecessary NMI singlestep on GIF=0 and nested exit ...
2017-07-03x86: kvm: mmu: make spte mmio mask more explicitPeter Feiner1-1/+1
Specify both a mask (i.e., bits to consider) and a value (i.e., pattern of bits that indicates a special PTE) for mmio SPTEs. On Intel, this lets us pack even more information into the (SPTE_SPECIAL_MASK | EPT_VMX_RWX_MASK) mask we use for access tracking liberating all (SPTE_SPECIAL_MASK | (non-misconfigured-RWX)) values. Signed-off-by: Peter Feiner <pfeiner@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-06-30Merge tag 'kvmarm-for-4.13' of ↵Paolo Bonzini1-2/+2
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/ARM updates for 4.13 - vcpu request overhaul - allow timer and PMU to have their interrupt number selected from userspace - workaround for Cavium erratum 30115 - handling of memory poisonning - the usual crop of fixes and cleanups Conflicts: arch/s390/include/asm/kvm_host.h
2017-06-29KVM: lapic: reorganize restart_apic_timerPaolo Bonzini1-4/+4
Move the code to cancel the hv timer into the caller, just before it starts the hrtimer. Check availability of the hv timer in start_hv_timer. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-06-22KVM: x86: fix singlestepping over syscallPaolo Bonzini1-30/+32
TF is handled a bit differently for syscall and sysret, compared to the other instructions: TF is checked after the instruction completes, so that the OS can disable #DB at a syscall by adding TF to FMASK. When the sysret is executed the #DB is taken "as if" the syscall insn just completed. KVM emulates syscall so that it can trap 32-bit syscall on Intel processors. Fix the behavior, otherwise you could get #DB on a user stack which is not nice. This does not affect Linux guests, as they use an IST or task gate for #DB. This fixes CVE-2017-7518. Cc: stable@vger.kernel.org Reported-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-06-11KVM: async_pf: avoid async pf injection when in guest modeWanpeng Li1-2/+1
INFO: task gnome-terminal-:1734 blocked for more than 120 seconds. Not tainted 4.12.0-rc4+ #8 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. gnome-terminal- D 0 1734 1015 0x00000000 Call Trace: __schedule+0x3cd/0xb30 schedule+0x40/0x90 kvm_async_pf_task_wait+0x1cc/0x270 ? __vfs_read+0x37/0x150 ? prepare_to_swait+0x22/0x70 do_async_page_fault+0x77/0xb0 ? do_async_page_fault+0x77/0xb0 async_page_fault+0x28/0x30 This is triggered by running both win7 and win2016 on L1 KVM simultaneously, and then gives stress to memory on L1, I can observed this hang on L1 when at least ~70% swap area is occupied on L0. This is due to async pf was injected to L2 which should be injected to L1, L2 guest starts receiving pagefault w/ bogus %cr2(apf token from the host actually), and L1 guest starts accumulating tasks stuck in D state in kvm_async_pf_task_wait() since missing PAGE_READY async_pfs. This patch fixes the hang by doing async pf when executing L1 guest. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-06-04KVM: add kvm_request_pendingRadim Krčmář1-2/+2
A first step in vcpu->requests encapsulation. Additionally, we now use READ_ONCE() when accessing vcpu->requests, which ensures we always load vcpu->requests when it's accessed. This is important as other threads can change it any time. Also, READ_ONCE() documents that vcpu->requests is used with other threads, likely requiring memory barriers, which it does. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> [ Documented the new use of READ_ONCE() and converted another check in arch/mips/kvm/vz.c ] Signed-off-by: Andrew Jones <drjones@redhat.com> Acked-by: Christoffer Dall <cdall@linaro.org> Signed-off-by: Christoffer Dall <cdall@linaro.org>
2017-06-01KVM: x86: Fix nmi injection failure when vcpu got blockedZhuangYanying1-2/+5
When spin_lock_irqsave() deadlock occurs inside the guest, vcpu threads, other than the lock-holding one, would enter into S state because of pvspinlock. Then inject NMI via libvirt API "inject-nmi", the NMI could not be injected into vm. The reason is: 1 It sets nmi_queued to 1 when calling ioctl KVM_NMI in qemu, and sets cpu->kvm_vcpu_dirty to true in do_inject_external_nmi() meanwhile. 2 It sets nmi_queued to 0 in process_nmi(), before entering guest, because cpu->kvm_vcpu_dirty is true. It's not enough just to check nmi_queued to decide whether to stay in vcpu_block() or not. NMI should be injected immediately at any situation. Add checking nmi_pending, and testing KVM_REQ_NMI replaces nmi_queued in vm_vcpu_has_events(). Do the same change for SMIs. Signed-off-by: Zhuang Yanying <ann.zhuangyanying@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-05-19KVM: x86: zero base3 of unusable segmentsRadim Krčmář1-0/+2
Static checker noticed that base3 could be used uninitialized if the segment was not present (useable). Random stack values probably would not pass VMCS entry checks. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Fixes: 1aa366163b8b ("KVM: x86 emulator: consolidate segment accessors") Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-05-19KVM: X86: Fix read out-of-bounds vulnerability in kvm pio emulationWanpeng Li1-9/+15
Huawei folks reported a read out-of-bounds vulnerability in kvm pio emulation. - "inb" instruction to access PIT Mod/Command register (ioport 0x43, write only, a read should be ignored) in guest can get a random number. - "rep insb" instruction to access PIT register port 0x43 can control memcpy() in emulator_pio_in_emulated() to copy max 0x400 bytes but only read 1 bytes, which will disclose the unimportant kernel memory in host but no crash. The similar test program below can reproduce the read out-of-bounds vulnerability: void hexdump(void *mem, unsigned int len) { unsigned int i, j; for(i = 0; i < len + ((len % HEXDUMP_COLS) ? (HEXDUMP_COLS - len % HEXDUMP_COLS) : 0); i++) { /* print offset */ if(i % HEXDUMP_COLS == 0) { printf("0x%06x: ", i); } /* print hex data */ if(i < len) { printf("%02x ", 0xFF & ((char*)mem)[i]); } else /* end of block, just aligning for ASCII dump */ { printf(" "); } /* print ASCII dump */ if(i % HEXDUMP_COLS == (HEXDUMP_COLS - 1)) { for(j = i - (HEXDUMP_COLS - 1); j <= i; j++) { if(j >= len) /* end of block, not really printing */ { putchar(' '); } else if(isprint(((char*)mem)[j])) /* printable char */ { putchar(0xFF & ((char*)mem)[j]); } else /* other char */ { putchar('.'); } } putchar('\n'); } } } int main(void) { int i; if (iopl(3)) { err(1, "set iopl unsuccessfully\n"); return -1; } static char buf[0x40]; /* test ioport 0x40,0x41,0x42,0x43,0x44,0x45 */ memset(buf, 0xab, sizeof(buf)); asm volatile("push %rdi;"); asm volatile("mov %0, %%rdi;"::"q"(buf)); asm volatile ("mov $0x40, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("mov $0x41, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("mov $0x42, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("mov $0x43, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("mov $0x44, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("mov $0x45, %rdx;"); asm volatile ("in %dx,%al;"); asm volatile ("stosb;"); asm volatile ("pop %rdi;"); hexdump(buf, 0x40); printf("\n"); /* ins port 0x40 */ memset(buf, 0xab, sizeof(buf)); asm volatile("push %rdi;"); asm volatile("mov %0, %%rdi;"::"q"(buf)); asm volatile ("mov $0x20, %rcx;"); asm volatile ("mov $0x40, %rdx;"); asm volatile ("rep insb;"); asm volatile ("pop %rdi;"); hexdump(buf, 0x40); printf("\n"); /* ins port 0x43 */ memset(buf, 0xab, sizeof(buf)); asm volatile("push %rdi;"); asm volatile("mov %0, %%rdi;"::"q"(buf)); asm volatile ("mov $0x20, %rcx;"); asm volatile ("mov $0x43, %rdx;"); asm volatile ("rep insb;"); asm volatile ("pop %rdi;"); hexdump(buf, 0x40); printf("\n"); return 0; } The vcpu->arch.pio_data buffer is used by both in/out instrutions emulation w/o clear after using which results in some random datas are left over in the buffer. Guest reads port 0x43 will be ignored since it is write only, however, the function kernel_pio() can't distigush this ignore from successfully reads data from device's ioport. There is no new data fill the buffer from port 0x43, however, emulator_pio_in_emulated() will copy the stale data in the buffer to the guest unconditionally. This patch fixes it by clearing the buffer before in instruction emulation to avoid to grant guest the stale data in the buffer. In addition, string I/O is not supported for in kernel device. So there is no iteration to read ioport %RCX times for string I/O. The function kernel_pio() just reads one round, and then copy the io size * %RCX to the guest unconditionally, actually it copies the one round ioport data w/ other random datas which are left over in the vcpu->arch.pio_data buffer to the guest. This patch fixes it by introducing the string I/O support for in kernel device in order to grant the right ioport datas to the guest. Before the patch: 0x000000: fe 38 93 93 ff ff ab ab .8...... 0x000008: ab ab ab ab ab ab ab ab ........ 0x000010: ab ab ab ab ab ab ab ab ........ 0x000018: ab ab ab ab ab ab ab ab ........ 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ 0x000000: f6 00 00 00 00 00 00 00 ........ 0x000008: 00 00 00 00 00 00 00 00 ........ 0x000010: 00 00 00 00 4d 51 30 30 ....MQ00 0x000018: 30 30 20 33 20 20 20 20 00 3 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ 0x000000: f6 00 00 00 00 00 00 00 ........ 0x000008: 00 00 00 00 00 00 00 00 ........ 0x000010: 00 00 00 00 4d 51 30 30 ....MQ00 0x000018: 30 30 20 33 20 20 20 20 00 3 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ After the patch: 0x000000: 1e 02 f8 00 ff ff ab ab ........ 0x000008: ab ab ab ab ab ab ab ab ........ 0x000010: ab ab ab ab ab ab ab ab ........ 0x000018: ab ab ab ab ab ab ab ab ........ 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ 0x000000: d2 e2 d2 df d2 db d2 d7 ........ 0x000008: d2 d3 d2 cf d2 cb d2 c7 ........ 0x000010: d2 c4 d2 c0 d2 bc d2 b8 ........ 0x000018: d2 b4 d2 b0 d2 ac d2 a8 ........ 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ 0x000000: 00 00 00 00 00 00 00 00 ........ 0x000008: 00 00 00 00 00 00 00 00 ........ 0x000010: 00 00 00 00 00 00 00 00 ........ 0x000018: 00 00 00 00 00 00 00 00 ........ 0x000020: ab ab ab ab ab ab ab ab ........ 0x000028: ab ab ab ab ab ab ab ab ........ 0x000030: ab ab ab ab ab ab ab ab ........ 0x000038: ab ab ab ab ab ab ab ab ........ Reported-by: Moguofang <moguofang@huawei.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Moguofang <moguofang@huawei.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Cc: stable@vger.kernel.org Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-05-19KVM: x86: Fix potential preemption when get the current kvmclock timestampWanpeng Li1-1/+9
BUG: using __this_cpu_read() in preemptible [00000000] code: qemu-system-x86/2809 caller is __this_cpu_preempt_check+0x13/0x20 CPU: 2 PID: 2809 Comm: qemu-system-x86 Not tainted 4.11.0+ #13 Call Trace: dump_stack+0x99/0xce check_preemption_disabled+0xf5/0x100 __this_cpu_preempt_check+0x13/0x20 get_kvmclock_ns+0x6f/0x110 [kvm] get_time_ref_counter+0x5d/0x80 [kvm] kvm_hv_process_stimers+0x2a1/0x8a0 [kvm] ? kvm_hv_process_stimers+0x2a1/0x8a0 [kvm] ? kvm_arch_vcpu_ioctl_run+0xac9/0x1ce0 [kvm] kvm_arch_vcpu_ioctl_run+0x5bf/0x1ce0 [kvm] kvm_vcpu_ioctl+0x384/0x7b0 [kvm] ? kvm_vcpu_ioctl+0x384/0x7b0 [kvm] ? __fget+0xf3/0x210 do_vfs_ioctl+0xa4/0x700 ? __fget+0x114/0x210 SyS_ioctl+0x79/0x90 entry_SYSCALL_64_fastpath+0x23/0xc2 RIP: 0033:0x7f9d164ed357 ? __this_cpu_preempt_check+0x13/0x20 This can be reproduced by run kvm-unit-tests/hyperv_stimer.flat w/ CONFIG_PREEMPT and CONFIG_DEBUG_PREEMPT enabled. Safe access to per-CPU data requires a couple of constraints, though: the thread working with the data cannot be preempted and it cannot be migrated while it manipulates per-CPU variables. If the thread is preempted, the thread that replaces it could try to work with the same variables; migration to another CPU could also cause confusion. However there is no preemption disable when reads host per-CPU tsc rate to calculate the current kvmclock timestamp. This patch fixes it by utilizing get_cpu/put_cpu pair to guarantee both __this_cpu_read() and rdtsc() are not preempted. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-05-15KVM: x86: Fix load damaged SSEx MXCSR registerWanpeng Li1-2/+7
Reported by syzkaller: BUG: unable to handle kernel paging request at ffffffffc07f6a2e IP: report_bug+0x94/0x120 PGD 348e12067 P4D 348e12067 PUD 348e14067 PMD 3cbd84067 PTE 80000003f7e87161 Oops: 0003 [#1] SMP CPU: 2 PID: 7091 Comm: kvm_load_guest_ Tainted: G OE 4.11.0+ #8 task: ffff92fdfb525400 task.stack: ffffbda6c3d04000 RIP: 0010:report_bug+0x94/0x120 RSP: 0018:ffffbda6c3d07b20 EFLAGS: 00010202 do_trap+0x156/0x170 do_error_trap+0xa3/0x170 ? kvm_load_guest_fpu.part.175+0x12a/0x170 [kvm] ? mark_held_locks+0x79/0xa0 ? retint_kernel+0x10/0x10 ? trace_hardirqs_off_thunk+0x1a/0x1c do_invalid_op+0x20/0x30 invalid_op+0x1e/0x30 RIP: 0010:kvm_load_guest_fpu.part.175+0x12a/0x170 [kvm] ? kvm_load_guest_fpu.part.175+0x1c/0x170 [kvm] kvm_arch_vcpu_ioctl_run+0xed6/0x1b70 [kvm] kvm_vcpu_ioctl+0x384/0x780 [kvm] ? kvm_vcpu_ioctl+0x384/0x780 [kvm] ? sched_clock+0x13/0x20 ? __do_page_fault+0x2a0/0x550 do_vfs_ioctl+0xa4/0x700 ? up_read+0x1f/0x40 ? __do_page_fault+0x2a0/0x550 SyS_ioctl+0x79/0x90 entry_SYSCALL_64_fastpath+0x23/0xc2 SDM mentioned that "The MXCSR has several reserved bits, and attempting to write a 1 to any of these bits will cause a general-protection exception(#GP) to be generated". The syzkaller forks' testcase overrides xsave area w/ random values and steps on the reserved bits of MXCSR register. The damaged MXCSR register values of guest will be restored to SSEx MXCSR register before vmentry. This patch fixes it by catching userspace override MXCSR register reserved bits w/ random values and bails out immediately. Reported-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-05-09Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-2/+2
Merge more updates from Andrew Morton: - the rest of MM - various misc things - procfs updates - lib/ updates - checkpatch updates - kdump/kexec updates - add kvmalloc helpers, use them - time helper updates for Y2038 issues. We're almost ready to remove current_fs_time() but that awaits a btrfs merge. - add tracepoints to DAX * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits) drivers/staging/ccree/ssi_hash.c: fix build with gcc-4.4.4 selftests/vm: add a test for virtual address range mapping dax: add tracepoint to dax_insert_mapping() dax: add tracepoint to dax_writeback_one() dax: add tracepoints to dax_writeback_mapping_range() dax: add tracepoints to dax_load_hole() dax: add tracepoints to dax_pfn_mkwrite() dax: add tracepoints to dax_iomap_pte_fault() mtd: nand: nandsim: convert to memalloc_noreclaim_*() treewide: convert PF_MEMALLOC manipulations to new helpers mm: introduce memalloc_noreclaim_{save,restore} mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC mm/huge_memory.c: deposit a pgtable for DAX PMD faults when required mm/huge_memory.c: use zap_deposited_table() more time: delete CURRENT_TIME_SEC and CURRENT_TIME gfs2: replace CURRENT_TIME with current_time apparmorfs: replace CURRENT_TIME with current_time() lustre: replace CURRENT_TIME macro fs: ubifs: replace CURRENT_TIME_SEC with current_time fs: ufs: use ktime_get_real_ts64() for birthtime ...
2017-05-09mm: introduce kv[mz]alloc helpersMichal Hocko1-2/+2
Patch series "kvmalloc", v5. There are many open coded kmalloc with vmalloc fallback instances in the tree. Most of them are not careful enough or simply do not care about the underlying semantic of the kmalloc/page allocator which means that a) some vmalloc fallbacks are basically unreachable because the kmalloc part will keep retrying until it succeeds b) the page allocator can invoke a really disruptive steps like the OOM killer to move forward which doesn't sound appropriate when we consider that the vmalloc fallback is available. As it can be seen implementing kvmalloc requires quite an intimate knowledge if the page allocator and the memory reclaim internals which strongly suggests that a helper should be implemented in the memory subsystem proper. Most callers, I could find, have been converted to use the helper instead. This is patch 6. There are some more relying on __GFP_REPEAT in the networking stack which I have converted as well and Eric Dumazet was not opposed [2] to convert them as well. [1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org [2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com This patch (of 9): Using kmalloc with the vmalloc fallback for larger allocations is a common pattern in the kernel code. Yet we do not have any common helper for that and so users have invented their own helpers. Some of them are really creative when doing so. Let's just add kv[mz]alloc and make sure it is implemented properly. This implementation makes sure to not make a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also to not warn about allocation failures. This also rules out the OOM killer as the vmalloc is a more approapriate fallback than a disruptive user visible action. This patch also changes some existing users and removes helpers which are specific for them. In some cases this is not possible (e.g. ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and require GFP_NO{FS,IO} context which is not vmalloc compatible in general (note that the page table allocation is GFP_KERNEL). Those need to be fixed separately. While we are at it, document that __vmalloc{_node} about unsupported gfp mask because there seems to be a lot of confusion out there. kvmalloc_node will warn about GFP_KERNEL incompatible (which are not superset) flags to catch new abusers. Existing ones would have to die slowly. [sfr@canb.auug.org.au: f2fs fixup] Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Reviewed-by: Andreas Dilger <adilger@dilger.ca> [ext4 part] Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: John Hubbard <jhubbard@nvidia.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>