summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/sighandling.h
AgeCommit message (Collapse)AuthorFilesLines
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-17x86/signal/64: Re-add support for SS in the 64-bit signal contextAndy Lutomirski1-1/+0
This is a second attempt to make the improvements from c6f2062935c8 ("x86/signal/64: Fix SS handling for signals delivered to 64-bit programs"), which was reverted by 51adbfbba5c6 ("x86/signal/64: Add support for SS in the 64-bit signal context"). This adds two new uc_flags flags. UC_SIGCONTEXT_SS will be set for all 64-bit signals (including x32). It indicates that the saved SS field is valid and that the kernel supports the new behavior. The goal is to fix a problems with signal handling in 64-bit tasks: SS wasn't saved in the 64-bit signal context, making it awkward to determine what SS was at the time of signal delivery and making it impossible to return to a non-flat SS (as calling sigreturn clobbers SS). This also made it extremely difficult for 64-bit tasks to return to fully-defined 16-bit contexts, because only the kernel can easily do espfix64, but sigreturn was unable to set a non-flag SS:ESP. (DOSEMU has a monstrous hack to partially work around this limitation.) If we could go back in time, the correct fix would be to make 64-bit signals work just like 32-bit signals with respect to SS: save it in signal context, reset it when delivering a signal, and restore it in sigreturn. Unfortunately, doing that (as I tried originally) breaks DOSEMU: DOSEMU wouldn't reset the signal context's SS when clearing the LDT and changing the saved CS to 64-bit mode, since it predates the SS context field existing in the first place. This patch is a bit more complicated, and it tries to balance a bunch of goals. It makes most cases of changing ucontext->ss during signal handling work as expected. I do this by special-casing the interesting case. On sigreturn, ucontext->ss will be honored by default, unless the ucontext was created from scratch by an old program and had a 64-bit CS (unfortunately, CRIU can do this) or was the result of changing a 32-bit signal context to 64-bit without resetting SS (as DOSEMU does). For the benefit of new 64-bit software that uses segmentation (new versions of DOSEMU might), the new behavior can be detected with a new ucontext flag UC_SIGCONTEXT_SS. To avoid compilation issues, __pad0 is left as an alias for ss in ucontext. The nitty-gritty details are documented in the header file. This patch also re-enables the sigreturn_64 and ldt_gdt_64 selftests, as the kernel change allows both of them to pass. Tested-by: Stas Sergeev <stsp@list.ru> Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Borislav Petkov <bp@alien8.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/749149cbfc3e75cd7fcdad69a854b399d792cc6f.1455664054.git.luto@kernel.org [ Small readability edit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-06x86/signal: Remove pax argument from restore_sigcontextBrian Gerst1-3/+1
The 'pax' argument is unnecesary. Instead, store the RAX value directly in regs. This pattern goes all the way back to 2.1.106pre1, when restore_sigcontext() was changed to return an error code instead of EAX directly: https://git.kernel.org/cgit/linux/kernel/git/history/history.git/diff/arch/i386/kernel/signal.c?id=9a8f8b7ca3f319bd668298d447bdf32730e51174 In 2007 sigaltstack syscall support was added, where the return value of restore_sigcontext() was changed to carry the memory-copying failure code. But instead of putting 'ax' into regs->ax directly, it was carried in via a pointer and then returned, where the generic syscall return code copied it to regs->ax. So there was never any deeper reason for this suboptimal pattern, it was simply never noticed after being introduced. Signed-off-by: Brian Gerst <brgerst@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1428152303-17154-1-git-send-email-brgerst@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-28x86/signals: Propagate RF EFLAGS bit through the signal restore callJiri Olsa1-2/+2
While porting Vince's perf overflow tests I found perf event breakpoint overflow does not work properly. I found the x86 RF EFLAG bit not being set when returning from debug exception after triggering signal handler. Which is exactly what you get when you set perf breakpoint overflow SIGIO handler. This patch and the next two patches fix the underlying bugs. This patch adds the RF EFLAGS bit to be restored on return from signal from the original register context before the signal was entered. This will prevent the RF flag to disappear when returning from exception due to the signal handler being executed. Signed-off-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com> Originally-Reported-by: Vince Weaver <vincent.weaver@maine.edu> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: Stephane Eranian <eranian@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1367421944-19082-2-git-send-email-jolsa@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-06-01most of set_current_blocked() callers want SIGKILL/SIGSTOP removed from setAl Viro1-2/+0
Only 3 out of 63 do not. Renamed the current variant to __set_current_blocked(), added set_current_blocked() that will exclude unblockable signals, switched open-coded instances to it. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-02-21x32: Export setup/restore_sigcontext from signal.cH. Peter Anvin1-0/+5
Export setup_sigcontext() and restore_sigcontext() from signal.c, so we can use the 64-bit versions verbatim for x32. Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2012-02-21x86: Move some signal-handling definitions to a common headerH. Peter Anvin1-0/+19
There are some definitions which are duplicated between kernel/signal.c and ia32/ia32_signal.c; move them to a common header file. Rather than adding stuff to existing header files which contain data structures, create a new header file; hence the slightly odd name ("all the good ones were taken.") Note: nothing relied on signal_fault() being defined in <asm/ptrace.h>. Signed-off-by: H. Peter Anvin <hpa@zytor.com>