Age | Commit message (Collapse) | Author | Files | Lines |
|
Patch series "mm: cleanup usage of <asm/pgalloc.h>"
Most architectures have very similar versions of pXd_alloc_one() and
pXd_free_one() for intermediate levels of page table. These patches add
generic versions of these functions in <asm-generic/pgalloc.h> and enable
use of the generic functions where appropriate.
In addition, functions declared and defined in <asm/pgalloc.h> headers are
used mostly by core mm and early mm initialization in arch and there is no
actual reason to have the <asm/pgalloc.h> included all over the place.
The first patch in this series removes unneeded includes of
<asm/pgalloc.h>
In the end it didn't work out as neatly as I hoped and moving
pXd_alloc_track() definitions to <asm-generic/pgalloc.h> would require
unnecessary changes to arches that have custom page table allocations, so
I've decided to move lib/ioremap.c to mm/ and make pgalloc-track.h local
to mm/.
This patch (of 8):
In most cases <asm/pgalloc.h> header is required only for allocations of
page table memory. Most of the .c files that include that header do not
use symbols declared in <asm/pgalloc.h> and do not require that header.
As for the other header files that used to include <asm/pgalloc.h>, it is
possible to move that include into the .c file that actually uses symbols
from <asm/pgalloc.h> and drop the include from the header file.
The process was somewhat automated using
sed -i -E '/[<"]asm\/pgalloc\.h/d' \
$(grep -L -w -f /tmp/xx \
$(git grep -E -l '[<"]asm/pgalloc\.h'))
where /tmp/xx contains all the symbols defined in
arch/*/include/asm/pgalloc.h.
[rppt@linux.ibm.com: fix powerpc warning]
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Link: http://lkml.kernel.org/r/20200627143453.31835-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200627143453.31835-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The only user of these inlines is the text poke code and this must not be
exposed to the world.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092559.139069561@linutronix.de
|
|
load_mm_cr4_irqsoff() is really a strange name for a function which has
only one purpose: Update the CR4.PCE bit depending on the perf state.
Rename it to update_cr4_pce_mm(), move it into the tlb code and provide a
function which can be invoked by the perf smp function calls.
Another step to remove exposure of cpu_tlbstate.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092559.049499158@linutronix.de
|
|
cpu_tlbstate is exported because various TLB-related functions need
access to it, but cpu_tlbstate is sensitive information which should
only be accessed by well-contained kernel functions and not be directly
exposed to modules.
In preparation for unexporting cpu_tlbstate move __get_current_cr3_fast()
into the x86 TLB management code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200421092558.848064318@linutronix.de
|
|
Idea of a foreign VMA with respect to the present context is very generic.
But currently there are two identical definitions for this in powerpc and
x86 platforms. Lets consolidate those redundant definitions while making
vma_is_foreign() available for general use later. This should not cause
any functional change.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Link: http://lkml.kernel.org/r/1582782965-3274-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/daveh/x86-mpx
Pull x86 MPX removal from Dave Hansen:
"MPX requires recompiling applications, which requires compiler
support. Unfortunately, GCC 9.1 is expected to be be released without
support for MPX. This means that there was only a relatively small
window where folks could have ever used MPX. It failed to gain wide
adoption in the industry, and Linux was the only mainstream OS to ever
support it widely.
Support for the feature may also disappear on future processors.
This set completes the process that we started during the 5.4 merge
window when the MPX prctl()s were removed. XSAVE support is left in
place, which allows MPX-using KVM guests to continue to function"
* tag 'mpx-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/daveh/x86-mpx:
x86/mpx: remove MPX from arch/x86
mm: remove arch_bprm_mm_init() hook
x86/mpx: remove bounds exception code
x86/mpx: remove build infrastructure
x86/alternatives: add missing insn.h include
|
|
From: Dave Hansen <dave.hansen@linux.intel.com>
MPX is being removed from the kernel due to a lack of support
in the toolchain going forward (gcc).
This removes all the remaining (dead at this point) MPX handling
code remaining in the tree. The only remaining code is the XSAVE
support for MPX state which is currently needd for KVM to handle
VMs which might use MPX.
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: x86@kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
|
|
From: Dave Hansen <dave.hansen@linux.intel.com>
MPX is being removed from the kernel due to a lack of support
in the toolchain going forward (gcc).
arch_bprm_mm_init() is used at execve() time. The only non-stub
implementation is on x86 for MPX. Remove the hook entirely from
all architectures and generic code.
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: x86@kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-arch@vger.kernel.org
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
|
|
type definitions
- Untangle the somewhat incestous way of how VMALLOC_START is used all across the
kernel, but is, on x86, defined deep inside one of the lowest level page table headers.
It doesn't help that vmalloc.h only includes a single asm header:
#include <asm/page.h> /* pgprot_t */
So there was no existing cross-arch way to decouple address layout
definitions from page.h details. I used this:
#ifndef VMALLOC_START
# include <asm/vmalloc.h>
#endif
This way every architecture that wants to simplify page.h can do so.
- Also on x86 we had a couple of LDT related inline functions that used
the late-stage address space layout positions - but these could be
uninlined without real trouble - the end result is cleaner this way as
well.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When you successfully write 0 to /sys/devices/cpu/rdpmc, the RDPMC
instruction should be disabled unconditionally and immediately (after you
close the SYSFS file) by the documentation.
Instead, in the current implementation the PMU must be reloaded which
happens only eventually some time in the future. Only after that the RDPMC
instruction becomes disabled (on ring 3) on the respective core.
This change makes the treatment of the 0 value as blocking and as
unconditional as the current treatment of the 2 value, only the CR4.PCE
bit is naturally set to false instead of true.
Signed-off-by: Anthony Steinhauser <asteinhauser@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Link: https://lkml.kernel.org/r/20191125054838.137615-1-asteinhauser@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
load_mm_cr4() is always called with interrupts disabled from:
- switch_mm_irqs_off()
- refresh_pce(), which is a on_each_cpu() callback
Thus, disabling interrupts in cr4_set/clear_bits() is redundant.
Implement cr4_set/clear_bits_irqsoff() helpers, rename load_mm_cr4() to
load_mm_cr4_irqsoff() and use the new helpers. The new helpers do not need
a lockdep assert as __cr4_set() has one already.
The renaming in combination with the checks in __cr4_set() ensure that any
changes in the boundary conditions at the call sites will be detected.
[ tglx: Massaged change log ]
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/0fbbcb64-5f26-4ffb-1bb9-4f5f48426893@siemens.com
|
|
This is a bit of a mess, to put it mildly. But, it's a bug
that only seems to have showed up in 4.20 but wasn't noticed
until now, because nobody uses MPX.
MPX has the arch_unmap() hook inside of munmap() because MPX
uses bounds tables that protect other areas of memory. When
memory is unmapped, there is also a need to unmap the MPX
bounds tables. Barring this, unused bounds tables can eat 80%
of the address space.
But, the recursive do_munmap() that gets called vi arch_unmap()
wreaks havoc with __do_munmap()'s state. It can result in
freeing populated page tables, accessing bogus VMA state,
double-freed VMAs and more.
See the "long story" further below for the gory details.
To fix this, call arch_unmap() before __do_unmap() has a chance
to do anything meaningful. Also, remove the 'vma' argument
and force the MPX code to do its own, independent VMA lookup.
== UML / unicore32 impact ==
Remove unused 'vma' argument to arch_unmap(). No functional
change.
I compile tested this on UML but not unicore32.
== powerpc impact ==
powerpc uses arch_unmap() well to watch for munmap() on the
VDSO and zeroes out 'current->mm->context.vdso_base'. Moving
arch_unmap() makes this happen earlier in __do_munmap(). But,
'vdso_base' seems to only be used in perf and in the signal
delivery that happens near the return to userspace. I can not
find any likely impact to powerpc, other than the zeroing
happening a little earlier.
powerpc does not use the 'vma' argument and is unaffected by
its removal.
I compile-tested a 64-bit powerpc defconfig.
== x86 impact ==
For the common success case this is functionally identical to
what was there before. For the munmap() failure case, it's
possible that some MPX tables will be zapped for memory that
continues to be in use. But, this is an extraordinarily
unlikely scenario and the harm would be that MPX provides no
protection since the bounds table got reset (zeroed).
I can't imagine anyone doing this:
ptr = mmap();
// use ptr
ret = munmap(ptr);
if (ret)
// oh, there was an error, I'll
// keep using ptr.
Because if you're doing munmap(), you are *done* with the
memory. There's probably no good data in there _anyway_.
This passes the original reproducer from Richard Biener as
well as the existing mpx selftests/.
The long story:
munmap() has a couple of pieces:
1. Find the affected VMA(s)
2. Split the start/end one(s) if neceesary
3. Pull the VMAs out of the rbtree
4. Actually zap the memory via unmap_region(), including
freeing page tables (or queueing them to be freed).
5. Fix up some of the accounting (like fput()) and actually
free the VMA itself.
This specific ordering was actually introduced by:
dd2283f2605e ("mm: mmap: zap pages with read mmap_sem in munmap")
during the 4.20 merge window. The previous __do_munmap() code
was actually safe because the only thing after arch_unmap() was
remove_vma_list(). arch_unmap() could not see 'vma' in the
rbtree because it was detached, so it is not even capable of
doing operations unsafe for remove_vma_list()'s use of 'vma'.
Richard Biener reported a test that shows this in dmesg:
[1216548.787498] BUG: Bad rss-counter state mm:0000000017ce560b idx:1 val:551
[1216548.787500] BUG: non-zero pgtables_bytes on freeing mm: 24576
What triggered this was the recursive do_munmap() called via
arch_unmap(). It was freeing page tables that has not been
properly zapped.
But, the problem was bigger than this. For one, arch_unmap()
can free VMAs. But, the calling __do_munmap() has variables
that *point* to VMAs and obviously can't handle them just
getting freed while the pointer is still in use.
I tried a couple of things here. First, I tried to fix the page
table freeing problem in isolation, but I then found the VMA
issue. I also tried having the MPX code return a flag if it
modified the rbtree which would force __do_munmap() to re-walk
to restart. That spiralled out of control in complexity pretty
fast.
Just moving arch_unmap() and accepting that the bonkers failure
case might eat some bounds tables seems like the simplest viable
fix.
This was also reported in the following kernel bugzilla entry:
https://bugzilla.kernel.org/show_bug.cgi?id=203123
There are some reports that this commit triggered this bug:
dd2283f2605 ("mm: mmap: zap pages with read mmap_sem in munmap")
While that commit certainly made the issues easier to hit, I believe
the fundamental issue has been with us as long as MPX itself, thus
the Fixes: tag below is for one of the original MPX commits.
[ mingo: Minor edits to the changelog and the patch. ]
Reported-by: Richard Biener <rguenther@suse.de>
Reported-by: H.J. Lu <hjl.tools@gmail.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-um@lists.infradead.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: stable@vger.kernel.org
Fixes: dd2283f2605e ("mm: mmap: zap pages with read mmap_sem in munmap")
Link: http://lkml.kernel.org/r/20190419194747.5E1AD6DC@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Prevent user watchpoints from mistakenly firing while the temporary mm
is being used. As the addresses of the temporary mm might overlap those
of the user-process, this is necessary to prevent wrong signals or worse
things from happening.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-5-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Using a dedicated page-table for temporary PTEs prevents other cores
from using - even speculatively - these PTEs, thereby providing two
benefits:
(1) Security hardening: an attacker that gains kernel memory writing
abilities cannot easily overwrite sensitive data.
(2) Avoiding TLB shootdowns: the PTEs do not need to be flushed in
remote page-tables.
To do so a temporary mm_struct can be used. Mappings which are private
for this mm can be set in the userspace part of the address-space.
During the whole time in which the temporary mm is loaded, interrupts
must be disabled.
The first use-case for temporary mm struct, which will follow, is for
poking the kernel text.
[ Commit message was written by Nadav Amit ]
Tested-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-4-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Memory protection key behavior should be the same in a child as it was
in the parent before a fork. But, there is a bug that resets the
state in the child at fork instead of preserving it.
The creation of new mm's is a bit convoluted. At fork(), the code
does:
1. memcpy() the parent mm to initialize child
2. mm_init() to initalize some select stuff stuff
3. dup_mmap() to create true copies that memcpy() did not do right
For pkeys two bits of state need to be preserved across a fork:
'execute_only_pkey' and 'pkey_allocation_map'.
Those are preserved by the memcpy(), but mm_init() invokes
init_new_context() which overwrites 'execute_only_pkey' and
'pkey_allocation_map' with "new" values.
The author of the code erroneously believed that init_new_context is *only*
called at execve()-time. But, alas, init_new_context() is used at execve()
and fork().
The result is that, after a fork(), the child's pkey state ends up looking
like it does after an execve(), which is totally wrong. pkeys that are
already allocated can be allocated again, for instance.
To fix this, add code called by dup_mmap() to copy the pkey state from
parent to child explicitly. Also add a comment above init_new_context() to
make it more clear to the next poor sod what this code is used for.
Fixes: e8c24d3a23a ("x86/pkeys: Allocation/free syscalls")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: peterz@infradead.org
Cc: mpe@ellerman.id.au
Cc: will.deacon@arm.com
Cc: luto@kernel.org
Cc: jroedel@suse.de
Cc: stable@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20190102215655.7A69518C@viggo.jf.intel.com
|
|
Most of the paravirt ops defined in pv_mmu_ops are for Xen PV guests
only. Define them only if CONFIG_PARAVIRT_XXL is set.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel@lists.xenproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: akataria@vmware.com
Cc: rusty@rustcorp.com.au
Cc: boris.ostrovsky@oracle.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20180828074026.820-15-jgross@suse.com
|
|
This adds the needed special case for PAE to get the LDT mapped into the
user page-table when PTI is enabled. The big difference to the other paging
modes is that on PAE there is no full top-level PGD entry available for the
LDT, but only a PMD entry.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-37-git-send-email-joro@8bytes.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Support for split PMD page table lock on 64-bit Book3S (Power8/9).
- Add support for HAVE_RELIABLE_STACKTRACE, so we properly support
live patching again.
- Add support for patching barrier_nospec in copy_from_user() and
syscall entry.
- A couple of fixes for our data breakpoints on Book3S.
- A series from Nick optimising TLB/mm handling with the Radix MMU.
- Numerous small cleanups to squash sparse/gcc warnings from Mathieu
Malaterre.
- Several series optimising various parts of the 32-bit code from
Christophe Leroy.
- Removal of support for two old machines, "SBC834xE" and "C2K"
("GEFanuc,C2K"), which is why the diffstat has so many deletions.
And many other small improvements & fixes.
There's a few out-of-area changes. Some minor ftrace changes OK'ed by
Steve, and a fix to our powernv cpuidle driver. Then there's a series
touching mm, x86 and fs/proc/task_mmu.c, which cleans up some details
around pkey support. It was ack'ed/reviewed by Ingo & Dave and has
been in next for several weeks.
Thanks to: Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al
Viro, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd
Bergmann, Balbir Singh, Cédric Le Goater, Christophe Leroy, Christophe
Lombard, Colin Ian King, Dave Hansen, Fabio Estevam, Finn Thain,
Frederic Barrat, Gautham R. Shenoy, Haren Myneni, Hari Bathini, Ingo
Molnar, Jonathan Neuschäfer, Josh Poimboeuf, Kamalesh Babulal,
Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu Malaterre,
Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul
Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica
Gupta, Ravi Bangoria, Russell Currey, Sam Bobroff, Samuel
Mendoza-Jonas, Segher Boessenkool, Shilpasri G Bhat, Simon Guo,
Souptick Joarder, Stewart Smith, Thiago Jung Bauermann, Torsten Duwe,
Vaibhav Jain, Wei Yongjun, Wolfram Sang, Yisheng Xie, YueHaibing"
* tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (251 commits)
powerpc/64s/radix: Fix missing ptesync in flush_cache_vmap
cpuidle: powernv: Fix promotion from snooze if next state disabled
powerpc: fix build failure by disabling attribute-alias warning in pci_32
ocxl: Fix missing unlock on error in afu_ioctl_enable_p9_wait()
powerpc-opal: fix spelling mistake "Uniterrupted" -> "Uninterrupted"
powerpc: fix spelling mistake: "Usupported" -> "Unsupported"
powerpc/pkeys: Detach execute_only key on !PROT_EXEC
powerpc/powernv: copy/paste - Mask SO bit in CR
powerpc: Remove core support for Marvell mv64x60 hostbridges
powerpc/boot: Remove core support for Marvell mv64x60 hostbridges
powerpc/boot: Remove support for Marvell mv64x60 i2c controller
powerpc/boot: Remove support for Marvell MPSC serial controller
powerpc/embedded6xx: Remove C2K board support
powerpc/lib: optimise PPC32 memcmp
powerpc/lib: optimise 32 bits __clear_user()
powerpc/time: inline arch_vtime_task_switch()
powerpc/Makefile: set -mcpu=860 flag for the 8xx
powerpc: Implement csum_ipv6_magic in assembly
powerpc/32: Optimise __csum_partial()
powerpc/lib: Adjust .balign inside string functions for PPC32
...
|
|
mm_pkey_is_allocated() treats pkey 0 as unallocated. That is
inconsistent with the manpages, and also inconsistent with
mm->context.pkey_allocation_map. Stop special casing it and only
disallow values that are actually bad (< 0).
The end-user visible effect of this is that you can now use
mprotect_pkey() to set pkey=0.
This is a bit nicer than what Ram proposed[1] because it is simpler
and removes special-casing for pkey 0. On the other hand, it does
allow applications to pkey_free() pkey-0, but that's just a silly
thing to do, so we are not going to protect against it.
The scenario that could happen is similar to what happens if you free
any other pkey that is in use: it might get reallocated later and used
to protect some other data. The most likely scenario is that pkey-0
comes back from pkey_alloc(), an access-disable or write-disable bit
is set in PKRU for it, and the next stack access will SIGSEGV. It's
not horribly different from if you mprotect()'d your stack or heap to
be unreadable or unwritable, which is generally very foolish, but also
not explicitly prevented by the kernel.
1. http://lkml.kernel.org/r/1522112702-27853-1-git-send-email-linuxram@us.ibm.com
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>p
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellermen <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org
Fixes: 58ab9a088dda ("x86/pkeys: Check against max pkey to avoid overflows")
Link: http://lkml.kernel.org/r/20180509171358.47FD785E@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Move the last remaining pkey helper, vma_pkey() into asm/pkeys.h
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
|
|
Consolidate the pkey handling by providing a common empty definition
of vma_pkey() in pkeys.h when CONFIG_ARCH_HAS_PKEYS=n.
This also removes another entanglement of pkeys.h and
asm/mmu_context.h.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Ram Pai <linuxram@us.ibm.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
|
|
No changes in refcount semantics -- use DEFINE_STATIC_KEY_FALSE()
for initialization and replace:
static_key_slow_inc|dec() => static_branch_inc|dec()
static_key_false() => static_branch_unlikely()
Added a '_key' suffix to rdpmc_always_available, for better self-documentation.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Link: http://lkml.kernel.org/r/20180326210929.5244-5-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
BUG() doesn't always imply "no return", and hence should be followed by
a return statement even if that's obviously (to a human) unreachable.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5A8AF2AA02000078001A91E9@prv-mh.provo.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
With PTI enabled, the LDT must be mapped in the usermode tables somewhere.
The LDT is per process, i.e. per mm.
An earlier approach mapped the LDT on context switch into a fixmap area,
but that's a big overhead and exhausted the fixmap space when NR_CPUS got
big.
Take advantage of the fact that there is an address space hole which
provides a completely unused pgd. Use this pgd to manage per-mm LDT
mappings.
This has a down side: the LDT isn't (currently) randomized, and an attack
that can write the LDT is instant root due to call gates (thanks, AMD, for
leaving call gates in AMD64 but designing them wrong so they're only useful
for exploits). This can be mitigated by making the LDT read-only or
randomizing the mapping, either of which is strightforward on top of this
patch.
This will significantly slow down LDT users, but that shouldn't matter for
important workloads -- the LDT is only used by DOSEMU(2), Wine, and very
old libc implementations.
[ tglx: Cleaned it up. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
For flushing the TLB, the ASID which has been programmed into the hardware
must be known. That differs from what is in 'cpu_tlbstate'.
Add functions to transform the 'cpu_tlbstate' values into to the one
programmed into the hardware (CR3).
It's not easy to include mmu_context.h into tlbflush.h, so just move the
CR3 building over to tlbflush.h.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The LDT is inherited across fork() or exec(), but that makes no sense
at all because exec() is supposed to start the process clean.
The reason why this happens is that init_new_context_ldt() is called from
init_new_context() which obviously needs to be called for both fork() and
exec().
It would be surprising if anything relies on that behaviour, so it seems to
be safe to remove that misfeature.
Split the context initialization into two parts. Clear the LDT pointer and
initialize the mutex from the general context init and move the LDT
duplication to arch_dup_mmap() which is only called on fork().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: dan.j.williams@intel.com
Cc: hughd@google.com
Cc: keescook@google.com
Cc: kirill.shutemov@linux.intel.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The LDT is duplicated on fork() and on exec(), which is wrong as exec()
should start from a clean state, i.e. without LDT. To fix this the LDT
duplication code will be moved into arch_dup_mmap() which is only called
for fork().
This introduces a locking problem. arch_dup_mmap() holds mmap_sem of the
parent process, but the LDT duplication code needs to acquire
mm->context.lock to access the LDT data safely, which is the reverse lock
order of write_ldt() where mmap_sem nests into context.lock.
Solve this by introducing a new rw semaphore which serializes the
read/write_ldt() syscall operations and use context.lock to protect the
actual installment of the LDT descriptor.
So context.lock stabilizes mm->context.ldt and can nest inside of the new
semaphore or mmap_sem.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: dan.j.williams@intel.com
Cc: hughd@google.com
Cc: keescook@google.com
Cc: kirill.shutemov@linux.intel.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
In order to sanitize the LDT initialization on x86 arch_dup_mmap() must be
allowed to fail. Fix up all instances.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: dan.j.williams@intel.com
Cc: hughd@google.com
Cc: keescook@google.com
Cc: kirill.shutemov@linux.intel.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
[ Note, this is a Git cherry-pick of the following commit:
506458efaf15 ("locking/barriers: Convert users of lockless_dereference() to READ_ONCE()")
... for easier x86 PTI code testing and back-porting. ]
READ_ONCE() now has an implicit smp_read_barrier_depends() call, so it
can be used instead of lockless_dereference() without any change in
semantics.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1508840570-22169-4-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Since commit:
94b1b03b519b ("x86/mm: Rework lazy TLB mode and TLB freshness tracking")
x86's lazy TLB mode has been all the way lazy: when running a kernel thread
(including the idle thread), the kernel keeps using the last user mm's
page tables without attempting to maintain user TLB coherence at all.
From a pure semantic perspective, this is fine -- kernel threads won't
attempt to access user pages, so having stale TLB entries doesn't matter.
Unfortunately, I forgot about a subtlety. By skipping TLB flushes,
we also allow any paging-structure caches that may exist on the CPU
to become incoherent. This means that we can have a
paging-structure cache entry that references a freed page table, and
the CPU is within its rights to do a speculative page walk starting
at the freed page table.
I can imagine this causing two different problems:
- A speculative page walk starting from a bogus page table could read
IO addresses. I haven't seen any reports of this causing problems.
- A speculative page walk that involves a bogus page table can install
garbage in the TLB. Such garbage would always be at a user VA, but
some AMD CPUs have logic that triggers a machine check when it notices
these bogus entries. I've seen a couple reports of this.
Boris further explains the failure mode:
> It is actually more of an optimization which assumes that paging-structure
> entries are in WB DRAM:
>
> "TlbCacheDis: cacheable memory disable. Read-write. 0=Enables
> performance optimization that assumes PML4, PDP, PDE, and PTE entries
> are in cacheable WB-DRAM; memory type checks may be bypassed, and
> addresses outside of WB-DRAM may result in undefined behavior or NB
> protocol errors. 1=Disables performance optimization and allows PML4,
> PDP, PDE and PTE entries to be in any memory type. Operating systems
> that maintain page tables in memory types other than WB- DRAM must set
> TlbCacheDis to insure proper operation."
>
> The MCE generated is an NB protocol error to signal that
>
> "Link: A specific coherent-only packet from a CPU was issued to an
> IO link. This may be caused by software which addresses page table
> structures in a memory type other than cacheable WB-DRAM without
> properly configuring MSRC001_0015[TlbCacheDis]. This may occur, for
> example, when page table structure addresses are above top of memory. In
> such cases, the NB will generate an MCE if it sees a mismatch between
> the memory operation generated by the core and the link type."
>
> I'm assuming coherent-only packets don't go out on IO links, thus the
> error.
To fix this, reinstate TLB coherence in lazy mode. With this patch
applied, we do it in one of two ways:
- If we have PCID, we simply switch back to init_mm's page tables
when we enter a kernel thread -- this seems to be quite cheap
except for the cost of serializing the CPU.
- If we don't have PCID, then we set a flag and switch to init_mm
the first time we would otherwise need to flush the TLB.
The /sys/kernel/debug/x86/tlb_use_lazy_mode debug switch can be changed
to override the default mode for benchmarking.
In theory, we could optimize this better by only flushing the TLB in
lazy CPUs when a page table is freed. Doing that would require
auditing the mm code to make sure that all page table freeing goes
through tlb_remove_page() as well as reworking some data structures
to implement the improved flush logic.
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Reported-by: Adam Borowski <kilobyte@angband.pl>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Johannes Hirte <johannes.hirte@datenkhaos.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 94b1b03b519b ("x86/mm: Rework lazy TLB mode and TLB freshness tracking")
Link: http://lkml.kernel.org/r/20171009170231.fkpraqokz6e4zeco@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Putting the logical ASID into CR3's PCID bits directly means that we
have two cases to consider separately: ASID == 0 and ASID != 0.
This means that bugs that only hit in one of these cases trigger
nondeterministically.
There were some bugs like this in the past, and I think there's
still one in current kernels. In particular, we have a number of
ASID-unware code paths that save CR3, write some special value, and
then restore CR3. This includes suspend/resume, hibernate, kexec,
EFI, and maybe other things I've missed. This is currently
dangerous: if ASID != 0, then this code sequence will leave garbage
in the TLB tagged for ASID 0. We could potentially see corruption
when switching back to ASID 0. In principle, an
initialize_tlbstate_and_flush() call after these sequences would
solve the problem, but EFI, at least, does not call this. (And it
probably shouldn't -- initialize_tlbstate_and_flush() is rather
expensive.)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/cdc14bbe5d3c3ef2a562be09a6368ffe9bd947a6.1505663533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Current, the code that assembles a value to load into CR3 is
open-coded everywhere. Factor it out into helpers build_cr3() and
build_cr3_noflush().
This makes one semantic change: __get_current_cr3_fast() was wrong
on SME systems. No one noticed because the only caller is in the
VMX code, and there are no CPUs with both SME and VMX.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <Thomas.Lendacky@amd.com>
Link: http://lkml.kernel.org/r/ce350cf11e93e2842d14d0b95b0199c7d881f527.1505663533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm changes from Ingo Molnar:
"PCID support, 5-level paging support, Secure Memory Encryption support
The main changes in this cycle are support for three new, complex
hardware features of x86 CPUs:
- Add 5-level paging support, which is a new hardware feature on
upcoming Intel CPUs allowing up to 128 PB of virtual address space
and 4 PB of physical RAM space - a 512-fold increase over the old
limits. (Supercomputers of the future forecasting hurricanes on an
ever warming planet can certainly make good use of more RAM.)
Many of the necessary changes went upstream in previous cycles,
v4.14 is the first kernel that can enable 5-level paging.
This feature is activated via CONFIG_X86_5LEVEL=y - disabled by
default.
(By Kirill A. Shutemov)
- Add 'encrypted memory' support, which is a new hardware feature on
upcoming AMD CPUs ('Secure Memory Encryption', SME) allowing system
RAM to be encrypted and decrypted (mostly) transparently by the
CPU, with a little help from the kernel to transition to/from
encrypted RAM. Such RAM should be more secure against various
attacks like RAM access via the memory bus and should make the
radio signature of memory bus traffic harder to intercept (and
decrypt) as well.
This feature is activated via CONFIG_AMD_MEM_ENCRYPT=y - disabled
by default.
(By Tom Lendacky)
- Enable PCID optimized TLB flushing on newer Intel CPUs: PCID is a
hardware feature that attaches an address space tag to TLB entries
and thus allows to skip TLB flushing in many cases, even if we
switch mm's.
(By Andy Lutomirski)
All three of these features were in the works for a long time, and
it's coincidence of the three independent development paths that they
are all enabled in v4.14 at once"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (65 commits)
x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)
x86/mm: Use pr_cont() in dump_pagetable()
x86/mm: Fix SME encryption stack ptr handling
kvm/x86: Avoid clearing the C-bit in rsvd_bits()
x86/CPU: Align CR3 defines
x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages
acpi, x86/mm: Remove encryption mask from ACPI page protection type
x86/mm, kexec: Fix memory corruption with SME on successive kexecs
x86/mm/pkeys: Fix typo in Documentation/x86/protection-keys.txt
x86/mm/dump_pagetables: Speed up page tables dump for CONFIG_KASAN=y
x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID
x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y
x86/mm: Allow userspace have mappings above 47-bit
x86/mm: Prepare to expose larger address space to userspace
x86/mpx: Do not allow MPX if we have mappings above 47-bit
x86/mm: Rename tasksize_32bit/64bit to task_size_32bit/64bit()
x86/xen: Redefine XEN_ELFNOTE_INIT_P2M using PUD_SIZE * PTRS_PER_PUD
x86/mm/dump_pagetables: Fix printout of p4d level
x86/mm/dump_pagetables: Generalize address normalization
x86/boot: Fix memremap() related build failure
...
|
|
Conflicts:
arch/x86/kernel/head64.c
arch/x86/mm/mmap.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The following commit:
39a0526fb3f7 ("x86/mm: Factor out LDT init from context init")
renamed init_new_context() to init_new_context_ldt() and added a new
init_new_context() which calls init_new_context_ldt(). However, the
error code of init_new_context_ldt() was ignored. Consequently, if a
memory allocation in alloc_ldt_struct() failed during a fork(), the
->context.ldt of the new task remained the same as that of the old task
(due to the memcpy() in dup_mm()). ldt_struct's are not intended to be
shared, so a use-after-free occurred after one task exited.
Fix the bug by making init_new_context() pass through the error code of
init_new_context_ldt().
This bug was found by syzkaller, which encountered the following splat:
BUG: KASAN: use-after-free in free_ldt_struct.part.2+0x10a/0x150 arch/x86/kernel/ldt.c:116
Read of size 4 at addr ffff88006d2cb7c8 by task kworker/u9:0/3710
CPU: 1 PID: 3710 Comm: kworker/u9:0 Not tainted 4.13.0-rc4-next-20170811 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:16 [inline]
dump_stack+0x194/0x257 lib/dump_stack.c:52
print_address_description+0x73/0x250 mm/kasan/report.c:252
kasan_report_error mm/kasan/report.c:351 [inline]
kasan_report+0x24e/0x340 mm/kasan/report.c:409
__asan_report_load4_noabort+0x14/0x20 mm/kasan/report.c:429
free_ldt_struct.part.2+0x10a/0x150 arch/x86/kernel/ldt.c:116
free_ldt_struct arch/x86/kernel/ldt.c:173 [inline]
destroy_context_ldt+0x60/0x80 arch/x86/kernel/ldt.c:171
destroy_context arch/x86/include/asm/mmu_context.h:157 [inline]
__mmdrop+0xe9/0x530 kernel/fork.c:889
mmdrop include/linux/sched/mm.h:42 [inline]
exec_mmap fs/exec.c:1061 [inline]
flush_old_exec+0x173c/0x1ff0 fs/exec.c:1291
load_elf_binary+0x81f/0x4ba0 fs/binfmt_elf.c:855
search_binary_handler+0x142/0x6b0 fs/exec.c:1652
exec_binprm fs/exec.c:1694 [inline]
do_execveat_common.isra.33+0x1746/0x22e0 fs/exec.c:1816
do_execve+0x31/0x40 fs/exec.c:1860
call_usermodehelper_exec_async+0x457/0x8f0 kernel/umh.c:100
ret_from_fork+0x2a/0x40 arch/x86/entry/entry_64.S:431
Allocated by task 3700:
save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59
save_stack+0x43/0xd0 mm/kasan/kasan.c:447
set_track mm/kasan/kasan.c:459 [inline]
kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551
kmem_cache_alloc_trace+0x136/0x750 mm/slab.c:3627
kmalloc include/linux/slab.h:493 [inline]
alloc_ldt_struct+0x52/0x140 arch/x86/kernel/ldt.c:67
write_ldt+0x7b7/0xab0 arch/x86/kernel/ldt.c:277
sys_modify_ldt+0x1ef/0x240 arch/x86/kernel/ldt.c:307
entry_SYSCALL_64_fastpath+0x1f/0xbe
Freed by task 3700:
save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59
save_stack+0x43/0xd0 mm/kasan/kasan.c:447
set_track mm/kasan/kasan.c:459 [inline]
kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524
__cache_free mm/slab.c:3503 [inline]
kfree+0xca/0x250 mm/slab.c:3820
free_ldt_struct.part.2+0xdd/0x150 arch/x86/kernel/ldt.c:121
free_ldt_struct arch/x86/kernel/ldt.c:173 [inline]
destroy_context_ldt+0x60/0x80 arch/x86/kernel/ldt.c:171
destroy_context arch/x86/include/asm/mmu_context.h:157 [inline]
__mmdrop+0xe9/0x530 kernel/fork.c:889
mmdrop include/linux/sched/mm.h:42 [inline]
__mmput kernel/fork.c:916 [inline]
mmput+0x541/0x6e0 kernel/fork.c:927
copy_process.part.36+0x22e1/0x4af0 kernel/fork.c:1931
copy_process kernel/fork.c:1546 [inline]
_do_fork+0x1ef/0xfb0 kernel/fork.c:2025
SYSC_clone kernel/fork.c:2135 [inline]
SyS_clone+0x37/0x50 kernel/fork.c:2129
do_syscall_64+0x26c/0x8c0 arch/x86/entry/common.c:287
return_from_SYSCALL_64+0x0/0x7a
Here is a C reproducer:
#include <asm/ldt.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/syscall.h>
#include <sys/wait.h>
#include <unistd.h>
static void *fork_thread(void *_arg)
{
fork();
}
int main(void)
{
struct user_desc desc = { .entry_number = 8191 };
syscall(__NR_modify_ldt, 1, &desc, sizeof(desc));
for (;;) {
if (fork() == 0) {
pthread_t t;
srand(getpid());
pthread_create(&t, NULL, fork_thread, NULL);
usleep(rand() % 10000);
syscall(__NR_exit_group, 0);
}
wait(NULL);
}
}
Note: the reproducer takes advantage of the fact that alloc_ldt_struct()
may use vmalloc() to allocate a large ->entries array, and after
commit:
5d17a73a2ebe ("vmalloc: back off when the current task is killed")
it is possible for userspace to fail a task's vmalloc() by
sending a fatal signal, e.g. via exit_group(). It would be more
difficult to reproduce this bug on kernels without that commit.
This bug only affected kernels with CONFIG_MODIFY_LDT_SYSCALL=y.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org> [v4.6+]
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Fixes: 39a0526fb3f7 ("x86/mm: Factor out LDT init from context init")
Link: http://lkml.kernel.org/r/20170824175029.76040-1-ebiggers3@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
using PCID
PCID is a "process context ID" -- it's what other architectures call
an address space ID. Every non-global TLB entry is tagged with a
PCID, only TLB entries that match the currently selected PCID are
used, and we can switch PGDs without flushing the TLB. x86's
PCID is 12 bits.
This is an unorthodox approach to using PCID. x86's PCID is far too
short to uniquely identify a process, and we can't even really
uniquely identify a running process because there are monster
systems with over 4096 CPUs. To make matters worse, past attempts
to use all 12 PCID bits have resulted in slowdowns instead of
speedups.
This patch uses PCID differently. We use a PCID to identify a
recently-used mm on a per-cpu basis. An mm has no fixed PCID
binding at all; instead, we give it a fresh PCID each time it's
loaded except in cases where we want to preserve the TLB, in which
case we reuse a recent value.
Here are some benchmark results, done on a Skylake laptop at 2.3 GHz
(turbo off, intel_pstate requesting max performance) under KVM with
the guest using idle=poll (to avoid artifacts when bouncing between
CPUs). I haven't done any real statistics here -- I just ran them
in a loop and picked the fastest results that didn't look like
outliers. Unpatched means commit a4eb8b993554, so all the
bookkeeping overhead is gone.
ping-pong between two mms on the same CPU using eventfd:
patched: 1.22µs
patched, nopcid: 1.33µs
unpatched: 1.34µs
Same ping-pong, but now touch 512 pages (all zero-page to minimize
cache misses) each iteration. dTLB misses are measured by
dtlb_load_misses.miss_causes_a_walk:
patched: 1.8µs 11M dTLB misses
patched, nopcid: 6.2µs, 207M dTLB misses
unpatched: 6.1µs, 190M dTLB misses
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Nadav Amit <nadav.amit@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/9ee75f17a81770feed616358e6860d98a2a5b1e7.1500957502.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
A recent commit:
d6e41f1151fe ("x86/mm, KVM: Teach KVM's VMX code that CR3 isn't a constant")
introduced a VM_WARN_ON(!in_atomic()) which generates false positives
on every VM entry on !CONFIG_PREEMPT_COUNT kernels.
Replace it with a test for preemptible(), which appears to match the
original intent and works across different CONFIG_PREEMPT* variations.
Signed-off-by: Roman Kagan <rkagan@virtuozzo.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: linux-mm@kvack.org
Fixes: d6e41f1151fe ("x86/mm, KVM: Teach KVM's VMX code that CR3 isn't a constant")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
x86's lazy TLB mode used to be fairly weak -- it would switch to
init_mm the first time it tried to flush a lazy TLB. This meant an
unnecessary CR3 write and, if the flush was remote, an unnecessary
IPI.
Rewrite it entirely. When we enter lazy mode, we simply remove the
CPU from mm_cpumask. This means that we need a way to figure out
whether we've missed a flush when we switch back out of lazy mode.
I use the tlb_gen machinery to track whether a context is up to
date.
Note to reviewers: this patch, my itself, looks a bit odd. I'm
using an array of length 1 containing (ctx_id, tlb_gen) rather than
just storing tlb_gen, and making it at array isn't necessary yet.
I'm doing this because the next few patches add PCID support, and,
with PCID, we need ctx_id, and the array will end up with a length
greater than 1. Making it an array now means that there will be
less churn and therefore less stress on your eyeballs.
NB: This is dubious but, AFAICT, still correct on Xen and UV.
xen_exit_mmap() uses mm_cpumask() for nefarious purposes and this
patch changes the way that mm_cpumask() works. This should be okay,
since Xen *also* iterates all online CPUs to find all the CPUs it
needs to twiddle.
The UV tlbflush code is rather dated and should be changed.
Here are some benchmark results, done on a Skylake laptop at 2.3 GHz
(turbo off, intel_pstate requesting max performance) under KVM with
the guest using idle=poll (to avoid artifacts when bouncing between
CPUs). I haven't done any real statistics here -- I just ran them
in a loop and picked the fastest results that didn't look like
outliers. Unpatched means commit a4eb8b993554, so all the
bookkeeping overhead is gone.
MADV_DONTNEED; touch the page; switch CPUs using sched_setaffinity. In
an unpatched kernel, MADV_DONTNEED will send an IPI to the previous CPU.
This is intended to be a nearly worst-case test.
patched: 13.4µs
unpatched: 21.6µs
Vitaly's pthread_mmap microbenchmark with 8 threads (on four cores),
nrounds = 100, 256M data
patched: 1.1 seconds or so
unpatched: 1.9 seconds or so
The sleepup on Vitaly's test appearss to be because it spends a lot
of time blocked on mmap_sem, and this patch avoids sending IPIs to
blocked CPUs.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Nadav Amit <nadav.amit@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Travis <travis@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/ddf2c92962339f4ba39d8fc41b853936ec0b44f1.1498751203.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This adds two new variables to mmu_context_t: ctx_id and tlb_gen.
ctx_id uniquely identifies the mm_struct and will never be reused.
For a given mm_struct (and hence ctx_id), tlb_gen is a monotonic
count of the number of times that a TLB flush has been requested.
The pair (ctx_id, tlb_gen) can be used as an identifier for TLB
flush actions and will be used in subsequent patches to reliably
determine whether all needed TLB flushes have occurred on a given
CPU.
This patch is split out for ease of review. By itself, it has no
real effect other than creating and updating the new variables.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Nadav Amit <nadav.amit@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/413a91c24dab3ed0caa5f4e4d017d87b0857f920.1498751203.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Originally, Linux reloaded the LDT whenever the prev mm or the next
mm had an LDT. It was changed in 2002 in:
0bbed3beb4f2 ("[PATCH] Thread-Local Storage (TLS) support")
(commit from the historical tree), like this:
- /* load_LDT, if either the previous or next thread
- * has a non-default LDT.
+ /*
+ * load the LDT, if the LDT is different:
*/
- if (next->context.size+prev->context.size)
+ if (unlikely(prev->context.ldt != next->context.ldt))
load_LDT(&next->context);
The current code is unlikely to avoid any LDT reloads, since different
mms won't share an LDT.
When we redo lazy mode to stop flush IPIs without switching to
init_mm, though, the current logic would become incorrect: it will
be possible to have real_prev == next but nonetheless have a stale
LDT descriptor.
Simplify the code to update LDTR if either the previous or the next
mm has an LDT, i.e. effectively restore the historical logic..
While we're at it, clean up the code by moving all the ifdeffery to
a header where it belongs.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/2a859ac01245f9594c58f9d0a8b2ed8a7cd2507e.1498022414.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This patch provides all required callbacks required by the generic
get_user_pages_fast() code and switches x86 over - and removes
the platform specific implementation.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-2-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The kernel has several code paths that read CR3. Most of them assume that
CR3 contains the PGD's physical address, whereas some of them awkwardly
use PHYSICAL_PAGE_MASK to mask off low bits.
Add explicit mask macros for CR3 and convert all of the CR3 readers.
This will keep them from breaking when PCID is enabled.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: xen-devel <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/883f8fb121f4616c1c1427ad87350bb2f5ffeca1.1497288170.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
... because this is exactly what it is: the number of entries in the
LDT. Calling it "size" is simply confusing and it is actually begging
to be called "nr_entries" or somesuch, especially if you see constructs
like:
alloc_size = size * LDT_ENTRY_SIZE;
since LDT_ENTRY_SIZE is the size of a single entry.
There should be no functionality change resulting from this patch, as
the before/after output from tools/testing/selftests/x86/ldt_gdt.c
shows.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170606173116.13977-1-bp@alien8.de
[ Renamed 'n_entries' to 'nr_entries' ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When PCID is enabled, CR3's PCID bits can change during context
switches, so KVM won't be able to treat CR3 as a per-mm constant any
more.
I structured this like the existing CR4 handling. Under ordinary
circumstances (PCID disabled or if the current PCID and the value
that's already in the VMCS match), then we won't do an extra VMCS
write, and we'll never do an extra direct CR3 read. The overhead
should be minimal.
I disallowed using the new helper in non-atomic context because
PCID support will cause CR3 to stop being constant in non-atomic
process context.
(Frankly, it also scares me a bit that KVM ever treated CR3 as
constant, but it looks like it was okay before.)
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The UP asm/tlbflush.h generates somewhat nicer code than the SMP version.
Aside from that, it's fallen quite a bit behind the SMP code:
- flush_tlb_mm_range() didn't flush individual pages if the range
was small.
- The lazy TLB code was much weaker. This usually wouldn't matter,
but, if a kernel thread flushed its lazy "active_mm" more than
once (due to reclaim or similar), it wouldn't be unlazied and
would instead pointlessly flush repeatedly.
- Tracepoints were missing.
Aside from that, simply having the UP code around was a maintanence
burden, since it means that any change to the TLB flush code had to
make sure not to break it.
Simplify everything by deleting the UP code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
implementation"
This reverts commit 2947ba054a4dabbd82848728d765346886050029.
Dan Williams reported dax-pmem kernel warnings with the following signature:
WARNING: CPU: 8 PID: 245 at lib/percpu-refcount.c:155 percpu_ref_switch_to_atomic_rcu+0x1f5/0x200
percpu ref (dax_pmem_percpu_release [dax_pmem]) <= 0 (0) after switching to atomic
... and bisected it to this commit, which suggests possible memory corruption
caused by the x86 fast-GUP conversion.
He also pointed out:
"
This is similar to the backtrace when we were not properly handling
pud faults and was fixed with this commit: 220ced1676c4 "mm: fix
get_user_pages() vs device-dax pud mappings"
I've found some missing _devmap checks in the generic
get_user_pages_fast() path, but this does not fix the regression
[...]
"
So given that there are known bugs, and a pretty robust looking bisection
points to this commit suggesting that are unknown bugs in the conversion
as well, revert it for the time being - we'll re-try in v4.13.
Reported-by: Dan Williams <dan.j.williams@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: aneesh.kumar@linux.vnet.ibm.com
Cc: dann.frazier@canonical.com
Cc: dave.hansen@intel.com
Cc: steve.capper@linaro.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This patch provides all required callbacks required by the generic
get_user_pages_fast() code and switches x86 over - and removes
the platform specific implementation.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar K . V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dann Frazier <dann.frazier@canonical.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170316213906.89528-1-kirill.shutemov@linux.intel.com
[ Minor readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The only arch that defines it to something meaningful is x86.
But x86 doesn't use the generic GUP_fast() implementation -- the
only place where the callback is called.
Let's drop it.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aneesh Kumar K . V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dann Frazier <dann.frazier@canonical.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170316152655.37789-2-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
ldt->size can never be negative. The helper functions take 'unsigned int'
arguments which are assigned from ldt->size. The related user space
user_desc struct member entry_number is unsigned as well.
But ldt->size itself and a few local variables which are related to
ldt->size are type 'int' which makes no sense whatsoever and results in
typecasts which make the eyes bleed.
Clean it up and convert everything which is related to ldt->size to
unsigned it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
|