Age | Commit message (Collapse) | Author | Files | Lines |
|
During a rollover, we mark the active ASID on each CPU as reserved, before
allocating a new ID for the task that caused the rollover. This means that
with N CPUs, we can only guarantee the new task to obtain a valid ASID if
we have at least N+1 ASIDs. Update this limit in the initcall check.
Note that this restriction was introduced by commit 8e648066 on the
arch/arm side, which disallow re-using the previously active ASID on the
local CPU, as it would introduce a TLB race.
In addition, we only dispose of NUM_USER_ASIDS-1, since ASID 0 is
reserved. Add this restriction as well.
Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
During the activation of a secondary CPU, we could report serious
configuration issues and hence request to crash the kernel. We do
this for CPU ASID bit check now. We will need it also for handling
mismatched exception levels for the CPUs with VHE. Hence, add a
helper to do the same for reusability.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Commit 0f54b14e76f5302a ("arm64: cpufeature: Change read_cpuid() to use
sysreg's mrs_s macro") changed read_cpuid to require a SYS_ prefix on
register names, to allow manual assembly of registers unknown by the
toolchain, using tables in sysreg.h.
This interacts poorly with commit 42b55734030c1f72 ("efi/arm64: Check
for h/w support before booting a >4 KB granular kernel"), which is
curretly queued via the tip tree, and uses read_cpuid without a SYS_
prefix. Due to this, a build of next-20160304 fails if EFI and 64K pages
are selected.
To avoid this issue when trees are merged, move the required SYS_
prefixing into read_cpuid, and revert all of the updated callsites to
pass plain register names. This effectively reverts the bulk of commit
0f54b14e76f5302a.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Now that we have a clear understanding of the sign of a feature,
rename the routines to reflect the sign, so that it is not misused.
The cpuid_feature_extract_field() now accepts a 'sign' parameter.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Adds a hook for checking whether a secondary CPU has the
features used already by the kernel during early boot, based
on the boot CPU and plugs in the check for ASID size.
The ID_AA64MMFR0_EL1:ASIDBits determines the size of the mm context
id and is used in the early boot to make decisions. The value is
picked up from the Boot CPU and cannot be delayed until other CPUs
are up. If a secondary CPU has a smaller size than that of the Boot
CPU, things will break horribly and the usual SANITY check is not good
enough to prevent the system from crashing. So, crash the system with
enough information.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add a helper to extract ASIDBits on the current cpu
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Older assemblers may not have support for newer feature registers. To get
round this, sysreg.h provides a 'mrs_s' macro that takes a register
encoding and generates the raw instruction.
Change read_cpuid() to use mrs_s in all cases so that new registers
don't have to be a special case. Including sysreg.h means we need to move
the include and definition of read_cpuid() after the #ifndef __ASSEMBLY__
to avoid syntax errors in vmlinux.lds.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Under some unusual context-switching patterns, it is possible to end up
with multiple threads from the same mm running concurrently with
different ASIDs:
1. CPU x schedules task t with mm p containing ASID a and generation g
This task doesn't block and the CPU doesn't context switch.
So:
* per_cpu(active_asid, x) = {g,a}
* p->context.id = {g,a}
2. Some other CPU generates an ASID rollover. The global generation is
now (g + 1). CPU x is still running t, with no context switch and
so per_cpu(reserved_asid, x) = {g,a}
3. CPU y schedules task t', which shares mm p with t. The generation
mismatches, so we take the slowpath and hit the reserved ASID from
CPU x. p is then updated so that p->context.id = {g + 1,a}
4. CPU y schedules some other task u, which has an mm != p.
5. Some other CPU generates *another* CPU rollover. The global
generation is now (g + 2). CPU x is still running t, with no context
switch and so per_cpu(reserved_asid, x) = {g,a}.
6. CPU y once again schedules task t', but now *fails* to hit the
reserved ASID from CPU x because of the generation mismatch. This
results in a new ASID being allocated, despite the fact that t is
still running on CPU x with the same mm.
Consequently, TLBIs (e.g. as a result of CoW) will not be synchronised
between the two threads.
This patch fixes the problem by updating all of the matching reserved
ASIDs when we hit on the slowpath (i.e. in step 3 above). This keeps
the reserved ASIDs in-sync with the mm and avoids the problem.
Reported-by: Tony Thompson <anthony.thompson@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
mm_cpumask isn't actually used for anything on arm64, so remove all the
code trying to keep it up-to-date.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
switch_mm performs some checks to try and avoid entering the ASID
allocator:
(1) If we're switching to the init_mm (no user mappings), then simply
set a reserved TTBR0 value with no page table (the zero page)
(2) If prev == next *and* the mm_cpumask indicates that we've run on
this CPU before, then we can skip the allocator.
However, there is plenty of redundancy here. With the new ASID allocator,
if prev == next, then we know that our ASID is valid and do not need to
worry about re-allocation. Consequently, we can drop the mm_cpumask check
in (2) and move the prev == next check before the init_mm check, since
if prev == next == init_mm then there's nothing to do.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Our current switch_mm implementation suffers from a number of problems:
(1) The ASID allocator relies on IPIs to synchronise the CPUs on a
rollover event
(2) Because of (1), we cannot allocate ASIDs with interrupts disabled
and therefore make use of a TIF_SWITCH_MM flag to postpone the
actual switch to finish_arch_post_lock_switch
(3) We run context switch with a reserved (invalid) TTBR0 value, even
though the ASID and pgd are updated atomically
(4) We take a global spinlock (cpu_asid_lock) during context-switch
(5) We use h/w broadcast TLB operations when they are not required
(e.g. in flush_context)
This patch addresses these problems by rewriting the ASID algorithm to
match the bitmap-based arch/arm/ implementation more closely. This in
turn allows us to remove much of the complications surrounding switch_mm,
including the ugly thread flag.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
There are a number of places where a single CPU is running with a
private page-table and we need to perform maintenance on the TLB and
I-cache in order to ensure correctness, but do not require the operation
to be broadcast to other CPUs.
This patch adds local variants of tlb_flush_all and __flush_icache_all
to support these use-cases and updates the callers respectively.
__local_flush_icache_all also implies an isb, since it is intended to be
used synchronously.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Nobody seems to be producing !SMP systems anymore, so this is just
becoming a source of kernel bugs, particularly if people want to use
coherent DMA with non-shared pages.
This patch forces CONFIG_SMP=y for arm64, removing a modest amount of
code in the process.
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
After secondary CPU boot or hotplug, the active_mm of the idle thread is
&init_mm. The init_mm.pgd (swapper_pg_dir) is only meant for TTBR1_EL1
and must not be set in TTBR0_EL1. Since when active_mm == &init_mm the
TTBR0_EL1 is already set to the reserved value, there is no need to
perform any context reset.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@vger.kernel.org>
|
|
The patch adds support for thread creation and context switching. The
context switching CPU specific code is introduced with the CPU support
patch (part of the arch/arm64/mm/proc.S file). AArch64 supports
ASID-tagged TLBs and the ASID can be either 8 or 16-bit wide (detectable
via the ID_AA64AFR0_EL1 register).
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|