summaryrefslogtreecommitdiff
AgeCommit message (Collapse)AuthorFilesLines
2018-04-11proc: replace seq_printf on seq_putc to speed up /proc/pid/smapsAndrei Vagin1-2/+3
seq_putc() works much faster than seq_printf() == Before patch == $ time python test_smaps.py real 0m3.828s user 0m0.413s sys 0m3.408s == After patch == $ time python test_smaps.py real 0m3.405s user 0m0.401s sys 0m3.003s == Before patch == - 75.51% 4.62% python [kernel.kallsyms] [k] show_smap.isra.33 - 70.88% show_smap.isra.33 + 24.82% seq_put_decimal_ull_aligned + 19.78% __walk_page_range + 12.74% seq_printf + 11.08% show_map_vma.isra.23 + 1.68% seq_puts == After patch == - 69.16% 5.70% python [kernel.kallsyms] [k] show_smap.isra.33 - 63.46% show_smap.isra.33 + 25.98% seq_put_decimal_ull_aligned + 20.90% __walk_page_range + 12.60% show_map_vma.isra.23 1.56% seq_putc + 1.55% seq_puts Link: http://lkml.kernel.org/r/20180212074931.7227-2-avagin@openvz.org Signed-off-by: Andrei Vagin <avagin@openvz.org> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11proc: add seq_put_decimal_ull_width to speed up /proc/pid/smapsAndrei Vagin7-102/+93
seq_put_decimal_ull_w(m, str, val, width) prints a decimal number with a specified minimal field width. It is equivalent of seq_printf(m, "%s%*d", str, width, val), but it works much faster. == test_smaps.py num = 0 with open("/proc/1/smaps") as f: for x in xrange(10000): data = f.read() f.seek(0, 0) == == Before patch == $ time python test_smaps.py real 0m4.593s user 0m0.398s sys 0m4.158s == After patch == $ time python test_smaps.py real 0m3.828s user 0m0.413s sys 0m3.408s $ perf -g record python test_smaps.py == Before patch == - 79.01% 3.36% python [kernel.kallsyms] [k] show_smap.isra.33 - 75.65% show_smap.isra.33 + 48.85% seq_printf + 15.75% __walk_page_range + 9.70% show_map_vma.isra.23 0.61% seq_puts == After patch == - 75.51% 4.62% python [kernel.kallsyms] [k] show_smap.isra.33 - 70.88% show_smap.isra.33 + 24.82% seq_put_decimal_ull_w + 19.78% __walk_page_range + 12.74% seq_printf + 11.08% show_map_vma.isra.23 + 1.68% seq_puts [akpm@linux-foundation.org: fix drivers/of/unittest.c build] Link: http://lkml.kernel.org/r/20180212074931.7227-1-avagin@openvz.org Signed-off-by: Andrei Vagin <avagin@openvz.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11proc: account "struct pde_opener"Alexey Dobriyan1-1/+1
The allocation is persistent in fact as any fool can open a file in /proc and sit on it. Link: http://lkml.kernel.org/r/20180214082409.GC17157@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@ZenIV.linux.org.uk> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11proc: move "struct pde_opener" to kmem cacheAlexey Dobriyan3-6/+10
"struct pde_opener" is fixed size and we can have more granular approach to debugging. For those who don't know, per cache SLUB poisoning and red zoning don't work if there is at least one object allocated which is hopeless in case of kmalloc-64 but not in case of standalone cache. Although systemd opens 2 files from the get go, so it is hopeless after all. Link: http://lkml.kernel.org/r/20180214082306.GB17157@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@ZenIV.linux.org.uk> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11proc: randomize "struct pde_opener"Alexey Dobriyan1-1/+1
The more the merrier. Link: http://lkml.kernel.org/r/20180214081935.GA17157@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@ZenIV.linux.org.uk> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11proc: faster open/close of files without ->release hookAlexey Dobriyan1-18/+23
The whole point of code in fs/proc/inode.c is to make sure ->release hook is called either at close() or at rmmod time. All if it is unnecessary if there is no ->release hook. Save allocation+list manipulations under spinlock in that case. Link: http://lkml.kernel.org/r/20180214063033.GA15579@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@ZenIV.linux.org.uk> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11proc: move /proc/sysvipc creation to where it belongsAlexey Dobriyan2-4/+1
Move the proc_mkdir() call within the sysvipc subsystem such that we avoid polluting proc_root_init() with petty cpp. [dave@stgolabs.net: contributed changelog] Link: http://lkml.kernel.org/r/20180216161732.GA10297@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Davidlohr Bueso <dave@stgolabs.net> Cc: Manfred Spraul <manfred@colorfullife.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11proc: do less stuff under ->pde_unload_lockAlexey Dobriyan1-5/+9
Commit ca469f35a8e9ef ("deal with races between remove_proc_entry() and proc_reg_release()") moved too much stuff under ->pde_unload_lock making a problem described at series "[PATCH v5] procfs: Improve Scaling in proc" worse. While RCU is being figured out, move kfree() out of ->pde_unload_lock. On my potato, difference is only 0.5% speedup with concurrent open+read+close of /proc/cmdline, but the effect should be more noticeable on more capable machines. $ perf stat -r 16 -- ./proc-j 16 Performance counter stats for './proc-j 16' (16 runs): 130569.502377 task-clock (msec) # 15.872 CPUs utilized ( +- 0.05% ) 19,169 context-switches # 0.147 K/sec ( +- 0.18% ) 15 cpu-migrations # 0.000 K/sec ( +- 3.27% ) 437 page-faults # 0.003 K/sec ( +- 1.25% ) 300,172,097,675 cycles # 2.299 GHz ( +- 0.05% ) 96,793,267,308 instructions # 0.32 insn per cycle ( +- 0.04% ) 22,798,342,298 branches # 174.607 M/sec ( +- 0.04% ) 111,764,687 branch-misses # 0.49% of all branches ( +- 0.47% ) 8.226574400 seconds time elapsed ( +- 0.05% ) ^^^^^^^^^^^ $ perf stat -r 16 -- ./proc-j 16 Performance counter stats for './proc-j 16' (16 runs): 129866.777392 task-clock (msec) # 15.869 CPUs utilized ( +- 0.04% ) 19,154 context-switches # 0.147 K/sec ( +- 0.66% ) 14 cpu-migrations # 0.000 K/sec ( +- 1.73% ) 431 page-faults # 0.003 K/sec ( +- 1.09% ) 298,556,520,546 cycles # 2.299 GHz ( +- 0.04% ) 96,525,366,833 instructions # 0.32 insn per cycle ( +- 0.04% ) 22,730,194,043 branches # 175.027 M/sec ( +- 0.04% ) 111,506,074 branch-misses # 0.49% of all branches ( +- 0.18% ) 8.183629778 seconds time elapsed ( +- 0.04% ) ^^^^^^^^^^^ Link: http://lkml.kernel.org/r/20180213132911.GA24298@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11proc: get rid of task lock/unlock pair to read umask for the "status" fileMateusz Guzik1-18/+5
get_task_umask locks/unlocks the task on its own. The only caller does the same thing immediately after. Utilize the fact the task has to be locked anyway and just do it once. Since there are no other users and the code is short, fold it in. Link: http://lkml.kernel.org/r/1517995608-23683-1-git-send-email-mguzik@redhat.com Signed-off-by: Mateusz Guzik <mguzik@redhat.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11procfs: optimize seq_pad() to speed up /proc/pid/mapsAndrei Vagin1-2/+8
seq_printf() is slow and it can be replaced by memset() in this case. == test.py num = 0 with open("/proc/1/maps") as f: while num < 10000 : data = f.read() f.seek(0, 0) num = num + 1 == == Before patch == $ time python test.py real 0m0.986s user 0m0.279s sys 0m0.707s == After patch == $ time python test.py real 0m0.932s user 0m0.261s sys 0m0.669s $ perf record -g python test.py == Before patch == - 47.35% 3.38% python [kernel.kallsyms] [k] show_map_vma.isra.23 - 43.97% show_map_vma.isra.23 + 20.84% seq_path - 15.73% show_vma_header_prefix + 6.96% seq_pad + 2.94% __GI___libc_read == After patch == - 44.01% 0.34% python [kernel.kallsyms] [k] show_pid_map - 43.67% show_pid_map - 42.91% show_map_vma.isra.23 + 21.55% seq_path - 15.68% show_vma_header_prefix + 2.08% seq_pad 0.55% seq_putc Link: http://lkml.kernel.org/r/20180112185812.7710-2-avagin@openvz.org Signed-off-by: Andrei Vagin <avagin@openvz.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11procfs: add seq_put_hex_ll to speed up /proc/pid/mapsAndrei Vagin3-9/+61
seq_put_hex_ll() prints a number in hexadecimal notation and works faster than seq_printf(). == test.py num = 0 with open("/proc/1/maps") as f: while num < 10000 : data = f.read() f.seek(0, 0) num = num + 1 == == Before patch == $ time python test.py real 0m1.561s user 0m0.257s sys 0m1.302s == After patch == $ time python test.py real 0m0.986s user 0m0.279s sys 0m0.707s $ perf -g record python test.py: == Before patch == - 67.42% 2.82% python [kernel.kallsyms] [k] show_map_vma.isra.22 - 64.60% show_map_vma.isra.22 - 44.98% seq_printf - seq_vprintf - vsnprintf + 14.85% number + 12.22% format_decode 5.56% memcpy_erms + 15.06% seq_path + 4.42% seq_pad + 2.45% __GI___libc_read == After patch == - 47.35% 3.38% python [kernel.kallsyms] [k] show_map_vma.isra.23 - 43.97% show_map_vma.isra.23 + 20.84% seq_path - 15.73% show_vma_header_prefix 10.55% seq_put_hex_ll + 2.65% seq_put_decimal_ull 0.95% seq_putc + 6.96% seq_pad + 2.94% __GI___libc_read [avagin@openvz.org: use unsigned int instead of int where it is suitable] Link: http://lkml.kernel.org/r/20180214025619.4005-1-avagin@openvz.org [avagin@openvz.org: v2] Link: http://lkml.kernel.org/r/20180117082050.25406-1-avagin@openvz.org Link: http://lkml.kernel.org/r/20180112185812.7710-1-avagin@openvz.org Signed-off-by: Andrei Vagin <avagin@openvz.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11kasan: prevent compiler from optimizing away memset in testsAndrey Konovalov1-0/+1
A compiler can optimize away memset calls by replacing them with mov instructions. There are KASAN tests that specifically test that KASAN correctly handles memset calls so we don't want this optimization to happen. The solution is to add -fno-builtin flag to test_kasan.ko Link: http://lkml.kernel.org/r/105ec9a308b2abedb1a0d1fdced0c22d765e4732.1519924383.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Nick Terrell <terrelln@fb.com> Cc: Chris Mason <clm@fb.com> Cc: Yury Norov <ynorov@caviumnetworks.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "Luis R . Rodriguez" <mcgrof@kernel.org> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Jeff Layton <jlayton@redhat.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Cc: Kostya Serebryany <kcc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11kasan: fix invalid-free test crashing the kernelAndrey Konovalov1-0/+8
When an invalid-free is triggered by one of the KASAN tests, the object doesn't actually get freed. This later leads to a BUG failure in kmem_cache_destroy that checks that there are no allocated objects in the cache that is being destroyed. Fix this by calling kmem_cache_free with the proper object address after the call that triggers invalid-free. Link: http://lkml.kernel.org/r/286eaefc0a6c3fa9b83b87e7d6dc0fbb5b5c9926.1519924383.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Nick Terrell <terrelln@fb.com> Cc: Chris Mason <clm@fb.com> Cc: Yury Norov <ynorov@caviumnetworks.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "Luis R . Rodriguez" <mcgrof@kernel.org> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Jeff Layton <jlayton@redhat.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Cc: Kostya Serebryany <kcc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11kasan, slub: fix handling of kasan_slab_free hookAndrey Konovalov1-23/+34
The kasan_slab_free hook's return value denotes whether the reuse of a slab object must be delayed (e.g. when the object is put into memory qurantine). The current way SLUB handles this hook is by ignoring its return value and hardcoding checks similar (but not exactly the same) to the ones performed in kasan_slab_free, which is prone to making mistakes. The main difference between the hardcoded checks and the ones in kasan_slab_free is whether we want to perform a free in case when an invalid-free or a double-free was detected (we don't). This patch changes the way SLUB handles this by: 1. taking into account the return value of kasan_slab_free for each of the objects, that are being freed; 2. reconstructing the freelist of objects to exclude the ones, whose reuse must be delayed. [andreyknvl@google.com: eliminate unnecessary branch in slab_free] Link: http://lkml.kernel.org/r/a62759a2545fddf69b0c034547212ca1eb1b3ce2.1520359686.git.andreyknvl@google.com Link: http://lkml.kernel.org/r/083f58501e54731203801d899632d76175868e97.1519400992.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Kostya Serebryany <kcc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/thp: don't count ZONE_MOVABLE as the target for freepage reservingJoonsoo Kim1-1/+9
There was a regression report for "mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE" [1] and I think that it is related to this problem. CMA patchset makes the system use one more zone (ZONE_MOVABLE) and then increases min_free_kbytes. It reduces usable memory and it could cause regression. ZONE_MOVABLE only has movable pages so we don't need to keep enough freepages to avoid or deal with fragmentation. So, don't count it. This changes min_free_kbytes and thus min_watermark greatly if ZONE_MOVABLE is used. It will make the user uses more memory. System: 22GB ram, fakenuma, 2 nodes. 5 zones are used. Before: min_free_kbytes: 112640 zone_info (min_watermark): Node 0, zone DMA min 19 Node 0, zone DMA32 min 3778 Node 0, zone Normal min 10191 Node 0, zone Movable min 0 Node 0, zone Device min 0 Node 1, zone DMA min 0 Node 1, zone DMA32 min 0 Node 1, zone Normal min 14043 Node 1, zone Movable min 127 Node 1, zone Device min 0 After: min_free_kbytes: 90112 zone_info (min_watermark): Node 0, zone DMA min 15 Node 0, zone DMA32 min 3022 Node 0, zone Normal min 8152 Node 0, zone Movable min 0 Node 0, zone Device min 0 Node 1, zone DMA min 0 Node 1, zone DMA32 min 0 Node 1, zone Normal min 11234 Node 1, zone Movable min 102 Node 1, zone Device min 0 [1] (lkml.kernel.org/r/20180102063528.GG30397%20()%20yexl-desktop) Link: http://lkml.kernel.org/r/1522913236-15776-1-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11ARM: CMA: avoid double mapping to the CMA area if CONFIG_HIGHMEM=yJoonsoo Kim1-1/+15
CMA area is now managed by the separate zone, ZONE_MOVABLE, to fix many MM related problems. In this implementation, if CONFIG_HIGHMEM = y, then ZONE_MOVABLE is considered as HIGHMEM and the memory of the CMA area is also considered as HIGHMEM. That means that they are considered as the page without direct mapping. However, CMA area could be in a lowmem and the memory could have direct mapping. In ARM, when establishing a new mapping for DMA, direct mapping should be cleared since two mapping with different cache policy could cause unknown problem. With this patch, PageHighmem() for the CMA memory located in lowmem returns true so that the function for DMA mapping cannot notice whether it needs to clear direct mapping or not, correctly. To handle this situation, this patch always clears direct mapping for such CMA memory. Link: http://lkml.kernel.org/r/1512114786-5085-4-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Tested-by: Tony Lindgren <tony@atomide.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/cma: remove ALLOC_CMAJoonsoo Kim3-29/+4
Now, all reserved pages for CMA region are belong to the ZONE_MOVABLE and it only serves for a request with GFP_HIGHMEM && GFP_MOVABLE. Therefore, we don't need to maintain ALLOC_CMA at all. Link: http://lkml.kernel.org/r/1512114786-5085-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Tested-by: Tony Lindgren <tony@atomide.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLEJoonsoo Kim5-19/+126
Patch series "mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE", v2. 0. History This patchset is the follow-up of the discussion about the "Introduce ZONE_CMA (v7)" [1]. Please reference it if more information is needed. 1. What does this patch do? This patch changes the management way for the memory of the CMA area in the MM subsystem. Currently the memory of the CMA area is managed by the zone where their pfn is belong to. However, this approach has some problems since MM subsystem doesn't have enough logic to handle the situation that different characteristic memories are in a single zone. To solve this issue, this patch try to manage all the memory of the CMA area by using the MOVABLE zone. In MM subsystem's point of view, characteristic of the memory on the MOVABLE zone and the memory of the CMA area are the same. So, managing the memory of the CMA area by using the MOVABLE zone will not have any problem. 2. Motivation There are some problems with current approach. See following. Although these problem would not be inherent and it could be fixed without this conception change, it requires many hooks addition in various code path and it would be intrusive to core MM and would be really error-prone. Therefore, I try to solve them with this new approach. Anyway, following is the problems of the current implementation. o CMA memory utilization First, following is the freepage calculation logic in MM. - For movable allocation: freepage = total freepage - For unmovable allocation: freepage = total freepage - CMA freepage Freepages on the CMA area is used after the normal freepages in the zone where the memory of the CMA area is belong to are exhausted. At that moment that the number of the normal freepages is zero, so - For movable allocation: freepage = total freepage = CMA freepage - For unmovable allocation: freepage = 0 If unmovable allocation comes at this moment, allocation request would fail to pass the watermark check and reclaim is started. After reclaim, there would exist the normal freepages so freepages on the CMA areas would not be used. FYI, there is another attempt [2] trying to solve this problem in lkml. And, as far as I know, Qualcomm also has out-of-tree solution for this problem. Useless reclaim: There is no logic to distinguish CMA pages in the reclaim path. Hence, CMA page is reclaimed even if the system just needs the page that can be usable for the kernel allocation. Atomic allocation failure: This is also related to the fallback allocation policy for the memory of the CMA area. Consider the situation that the number of the normal freepages is *zero* since the bunch of the movable allocation requests come. Kswapd would not be woken up due to following freepage calculation logic. - For movable allocation: freepage = total freepage = CMA freepage If atomic unmovable allocation request comes at this moment, it would fails due to following logic. - For unmovable allocation: freepage = total freepage - CMA freepage = 0 It was reported by Aneesh [3]. Useless compaction: Usual high-order allocation request is unmovable allocation request and it cannot be served from the memory of the CMA area. In compaction, migration scanner try to migrate the page in the CMA area and make high-order page there. As mentioned above, it cannot be usable for the unmovable allocation request so it's just waste. 3. Current approach and new approach Current approach is that the memory of the CMA area is managed by the zone where their pfn is belong to. However, these memory should be distinguishable since they have a strong limitation. So, they are marked as MIGRATE_CMA in pageblock flag and handled specially. However, as mentioned in section 2, the MM subsystem doesn't have enough logic to deal with this special pageblock so many problems raised. New approach is that the memory of the CMA area is managed by the MOVABLE zone. MM already have enough logic to deal with special zone like as HIGHMEM and MOVABLE zone. So, managing the memory of the CMA area by the MOVABLE zone just naturally work well because constraints for the memory of the CMA area that the memory should always be migratable is the same with the constraint for the MOVABLE zone. There is one side-effect for the usability of the memory of the CMA area. The use of MOVABLE zone is only allowed for a request with GFP_HIGHMEM && GFP_MOVABLE so now the memory of the CMA area is also only allowed for this gfp flag. Before this patchset, a request with GFP_MOVABLE can use them. IMO, It would not be a big issue since most of GFP_MOVABLE request also has GFP_HIGHMEM flag. For example, file cache page and anonymous page. However, file cache page for blockdev file is an exception. Request for it has no GFP_HIGHMEM flag. There is pros and cons on this exception. In my experience, blockdev file cache pages are one of the top reason that causes cma_alloc() to fail temporarily. So, we can get more guarantee of cma_alloc() success by discarding this case. Note that there is no change in admin POV since this patchset is just for internal implementation change in MM subsystem. Just one minor difference for admin is that the memory stat for CMA area will be printed in the MOVABLE zone. That's all. 4. Result Following is the experimental result related to utilization problem. 8 CPUs, 1024 MB, VIRTUAL MACHINE make -j16 <Before> CMA area: 0 MB 512 MB Elapsed-time: 92.4 186.5 pswpin: 82 18647 pswpout: 160 69839 <After> CMA : 0 MB 512 MB Elapsed-time: 93.1 93.4 pswpin: 84 46 pswpout: 183 92 akpm: "kernel test robot" reported a 26% improvement in vm-scalability.throughput: http://lkml.kernel.org/r/20180330012721.GA3845@yexl-desktop [1]: lkml.kernel.org/r/1491880640-9944-1-git-send-email-iamjoonsoo.kim@lge.com [2]: https://lkml.org/lkml/2014/10/15/623 [3]: http://www.spinics.net/lists/linux-mm/msg100562.html Link: http://lkml.kernel.org/r/1512114786-5085-2-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Tested-by: Tony Lindgren <tony@atomide.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/page_alloc: don't reserve ZONE_HIGHMEM for ZONE_MOVABLE requestJoonsoo Kim3-15/+17
Freepage on ZONE_HIGHMEM doesn't work for kernel memory so it's not that important to reserve. When ZONE_MOVABLE is used, this problem would theorectically cause to decrease usable memory for GFP_HIGHUSER_MOVABLE allocation request which is mainly used for page cache and anon page allocation. So, fix it by setting 0 to sysctl_lowmem_reserve_ratio[ZONE_HIGHMEM]. And, defining sysctl_lowmem_reserve_ratio array by MAX_NR_ZONES - 1 size makes code complex. For example, if there is highmem system, following reserve ratio is activated for *NORMAL ZONE* which would be easyily misleading people. #ifdef CONFIG_HIGHMEM 32 #endif This patch also fixes this situation by defining sysctl_lowmem_reserve_ratio array by MAX_NR_ZONES and place "#ifdef" to right place. Link: http://lkml.kernel.org/r/1504672525-17915-1-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Tony Lindgren <tony@atomide.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm: unclutter THP migrationMichal Hocko5-41/+36
THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by spliting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaning pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [1]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. This patch tries to unclutter the situation by moving the special THP handling up to the migrate_pages layer where it actually belongs. We simply split the THP page into the existing list if unmap_and_move fails with ENOMEM and retry. So we will _always_ migrate all THP subpages and specific migrate_pages users do not have to deal with this case in a special way. [1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm, migrate: remove reason argument from new_page_tMichal Hocko10-35/+14
No allocation callback is using this argument anymore. new_page_node used to use this parameter to convey node_id resp. migration error up to move_pages code (do_move_page_to_node_array). The error status never made it into the final status field and we have a better way to communicate node id to the status field now. All other allocation callbacks simply ignored the argument so we can drop it finally. [mhocko@suse.com: fix migration callback] Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz [akpm@linux-foundation.org: fix alloc_misplaced_dst_page()] [mhocko@kernel.org: fix build] Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm, numa: rework do_pages_moveMichal Hocko3-175/+139
Patch series "unclutter thp migration" Motivation: THP migration is hacked into the generic migration with rather surprising semantic. The migration allocation callback is supposed to check whether the THP can be migrated at once and if that is not the case then it allocates a simple page to migrate. unmap_and_move then fixes that up by splitting the THP into small pages while moving the head page to the newly allocated order-0 page. Remaining pages are moved to the LRU list by split_huge_page. The same happens if the THP allocation fails. This is really ugly and error prone [2]. I also believe that split_huge_page to the LRU lists is inherently wrong because all tail pages are not migrated. Some callers will just work around that by retrying (e.g. memory hotplug). There are other pfn walkers which are simply broken though. e.g. madvise_inject_error will migrate head and then advances next pfn by the huge page size. do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind), will simply split the THP before migration if the THP migration is not supported then falls back to single page migration but it doesn't handle tail pages if the THP migration path is not able to allocate a fresh THP so we end up with ENOMEM and fail the whole migration which is a questionable behavior. Page compaction doesn't try to migrate large pages so it should be immune. The first patch reworks do_pages_move which relies on a very ugly calling semantic when the return status is pushed to the migration path via private pointer. It uses pre allocated fixed size batching to achieve that. We simply cannot do the same if a THP is to be split during the migration path which is done in the patch 3. Patch 2 is follow up cleanup which removes the mentioned return status calling convention ugliness. On a side note: There are some semantic issues I have encountered on the way when working on patch 1 but I am not addressing them here. E.g. trying to move THP tail pages will result in either success or EBUSY (the later one more likely once we isolate head from the LRU list). Hugetlb reports EACCESS on tail pages. Some errors are reported via status parameter but migration failures are not even though the original `reason' argument suggests there was an intention to do so. From a quick look into git history this never worked. I have tried to keep the semantic unchanged. Then there is a relatively minor thing that the page isolation might fail because of pages not being on the LRU - e.g. because they are sitting on the per-cpu LRU caches. Easily fixable. This patch (of 3): do_pages_move is supposed to move user defined memory (an array of addresses) to the user defined numa nodes (an array of nodes one for each address). The user provided status array then contains resulting numa node for each address or an error. The semantic of this function is little bit confusing because only some errors are reported back. Notably migrate_pages error is only reported via the return value. This patch doesn't try to address these semantic nuances but rather change the underlying implementation. Currently we are processing user input (which can be really large) in batches which are stored to a temporarily allocated page. Each address is resolved to its struct page and stored to page_to_node structure along with the requested target numa node. The array of these structures is then conveyed down the page migration path via private argument. new_page_node then finds the corresponding structure and allocates the proper target page. What is the problem with the current implementation and why to change it? Apart from being quite ugly it also doesn't cope with unexpected pages showing up on the migration list inside migrate_pages path. That doesn't happen currently but the follow up patch would like to make the thp migration code more clear and that would need to split a THP into the list for some cases. How does the new implementation work? Well, instead of batching into a fixed size array we simply batch all pages that should be migrated to the same node and isolate all of them into a linked list which doesn't require any additional storage. This should work reasonably well because page migration usually migrates larger ranges of memory to a specific node. So the common case should work equally well as the current implementation. Even if somebody constructs an input where the target numa nodes would be interleaved we shouldn't see a large performance impact because page migration alone doesn't really benefit from batching. mmap_sem batching for the lookup is quite questionable and isolate_lru_page which would benefit from batching is not using it even in the current implementation. Link: http://lkml.kernel.org/r/20180103082555.14592-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/swapfile.c: make pointer swap_avail_heads staticColin Ian King1-1/+1
The pointer swap_avail_heads is local to the source and does not need to be in global scope, so make it static. Cleans up sparse warning: mm/swapfile.c:88:19: warning: symbol 'swap_avail_heads' was not declared. Should it be static? Link: http://lkml.kernel.org/r/20180206215836.12366-1-colin.king@canonical.com Signed-off-by: Colin Ian King <colin.king@canonical.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11memcg: fix per_node_info cleanupMichal Hocko1-0/+3
syzbot has triggered a NULL ptr dereference when allocation fault injection enforces a failure and alloc_mem_cgroup_per_node_info initializes memcg->nodeinfo only half way through. But __mem_cgroup_free still tries to free all per-node data and dereferences pn->lruvec_stat_cpu unconditioanlly even if the specific per-node data hasn't been initialized. The bug is quite unlikely to hit because small allocations do not fail and we would need quite some numa nodes to make struct mem_cgroup_per_node large enough to cross the costly order. Link: http://lkml.kernel.org/r/20180406100906.17790-1-mhocko@kernel.org Reported-by: syzbot+8a5de3cce7cdc70e9ebe@syzkaller.appspotmail.com Fixes: 00f3ca2c2d66 ("mm: memcontrol: per-lruvec stats infrastructure") Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11swap: divide-by-zero when zero length swap file on ssdTom Abraham1-0/+4
Calling swapon() on a zero length swap file on SSD can lead to a divide-by-zero. Although creating such files isn't possible with mkswap and they woud be considered invalid, it would be better for the swapon code to be more robust and handle this condition gracefully (return -EINVAL). Especially since the fix is small and straightforward. To help with wear leveling on SSD, the swapon syscall calculates a random position in the swap file using modulo p->highest_bit, which is set to maxpages - 1 in read_swap_header. If the swap file is zero length, read_swap_header sets maxpages=1 and last_page=0, resulting in p->highest_bit=0 and we divide-by-zero when we modulo p->highest_bit in swapon syscall. This can be prevented by having read_swap_header return zero if last_page is zero. Link: http://lkml.kernel.org/r/5AC747C1020000A7001FA82C@prv-mh.provo.novell.com Signed-off-by: Thomas Abraham <tabraham@suse.com> Reported-by: <Mark.Landis@Teradata.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm: memcg: make sure memory.events is uptodate when waking pollersJohannes Weiner3-30/+35
Commit a983b5ebee57 ("mm: memcontrol: fix excessive complexity in memory.stat reporting") added per-cpu drift to all memory cgroup stats and events shown in memory.stat and memory.events. For memory.stat this is acceptable. But memory.events issues file notifications, and somebody polling the file for changes will be confused when the counters in it are unchanged after a wakeup. Luckily, the events in memory.events - MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX, MEMCG_OOM - are sufficiently rare and high-level that we don't need per-cpu buffering for them: MEMCG_HIGH and MEMCG_MAX would be the most frequent, but they're counting invocations of reclaim, which is a complex operation that touches many shared cachelines. This splits memory.events from the generic VM events and tracks them in their own, unbuffered atomic counters. That's also cleaner, as it eliminates the ugly enum nesting of VM and cgroup events. [hannes@cmpxchg.org: "array subscript is above array bounds"] Link: http://lkml.kernel.org/r/20180406155441.GA20806@cmpxchg.org Link: http://lkml.kernel.org/r/20180405175507.GA24817@cmpxchg.org Fixes: a983b5ebee57 ("mm: memcontrol: fix excessive complexity in memory.stat reporting") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Tejun Heo <tj@kernel.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Rik van Riel <riel@surriel.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/ksm.c: fix inconsistent accounting of zero pagesClaudio Imbrenda1-0/+7
When using KSM with use_zero_pages, we replace anonymous pages containing only zeroes with actual zero pages, which are not anonymous. We need to do proper accounting of the mm counters, otherwise we will get wrong values in /proc and a BUG message in dmesg when tearing down the mm. Link: http://lkml.kernel.org/r/1522931274-15552-1-git-send-email-imbrenda@linux.vnet.ibm.com Fixes: e86c59b1b1 ("mm/ksm: improve deduplication of zero pages with colouring") Signed-off-by: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/z3fold.c: use gfpflags_allow_blockingMatthew Wilcox1-1/+1
We have a perfectly good macro to determine whether the gfp flags allow you to sleep or not; use it instead of trying to infer it. Link: http://lkml.kernel.org/r/20180408062206.GC16007@bombadil.infradead.org Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vitaly Wool <vitalywool@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11z3fold: fix memory leakXidong Wang1-2/+7
In z3fold_create_pool(), the memory allocated by __alloc_percpu() is not released on the error path that pool->compact_wq , which holds the return value of create_singlethread_workqueue(), is NULL. This will result in a memory leak bug. [akpm@linux-foundation.org: fix oops on kzalloc() failure, check __alloc_percpu() retval] Link: http://lkml.kernel.org/r/1522803111-29209-1-git-send-email-wangxidong_97@163.com Signed-off-by: Xidong Wang <wangxidong_97@163.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11memcg, thp: do not invoke oom killer on thp chargesMichal Hocko3-10/+5
A THP memcg charge can trigger the oom killer since 2516035499b9 ("mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations"). We have used an explicit __GFP_NORETRY previously which ruled the OOM killer automagically. Memcg charge path should be semantically compliant with the allocation path and that means that if we do not trigger the OOM killer for costly orders which should do the same in the memcg charge path as well. Otherwise we are forcing callers to distinguish the two and use different gfp masks which is both non-intuitive and bug prone. As soon as we get a costly high order kmalloc user we even do not have any means to tell the memcg specific gfp mask to prevent from OOM because the charging is deep within guts of the slab allocator. The unexpected memcg OOM on THP has already been fixed upstream by 9d3c3354bb85 ("mm, thp: do not cause memcg oom for thp") but this is a one-off fix rather than a generic solution. Teach mem_cgroup_oom to bail out on costly order requests to fix the THP issue as well as any other costly OOM eligible allocations to be added in future. Also revert 9d3c3354bb85 because special gfp for THP is no longer needed. Link: http://lkml.kernel.org/r/20180403193129.22146-1-mhocko@kernel.org Fixes: 2516035499b9 ("mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations") Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/migrate: properly preserve write attribute in special migrate entryRalph Campbell1-1/+2
Use of pte_write(pte) is only valid for present pte, the common code which set the migration entry can be reach for both valid present pte and special swap entry (for device memory). Fix the code to use the mpfn value which properly handle both cases. On x86 this did not have any bad side effect because pte write bit is below PAGE_BIT_GLOBAL and thus special swap entry have it set to 0 which in turn means we were always creating read only special migration entry. So once migration did finish we always write protected the CPU page table entry (moreover this is only an issue when migrating from device memory to system memory). End effect is that CPU write access would fault again and restore write permission. This behaviour isn't too bad; it just burns CPU cycles by forcing CPU to take a second fault on write access. ie, double faulting the same address. There is no corruption or incorrect states (it behaves as a COWed page from a fork with a mapcount of 1). Link: http://lkml.kernel.org/r/20180402023506.12180-1-jglisse@redhat.com Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm: check __highest_present_section_nr directly in memory_dev_init()Wei Yang1-5/+2
__highest_present_section_nr is a more strict boundary than NR_MEM_SECTIONS. So checking __highest_present_section_nr directly is enough. Link: http://lkml.kernel.org/r/20180330032044.21647-1-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11sched/numa: avoid trapping faults and attempting migration of file-backed ↵Mel Gorman2-0/+16
dirty pages change_pte_range is called from task work context to mark PTEs for receiving NUMA faulting hints. If the marked pages are dirty then migration may fail. Some filesystems cannot migrate dirty pages without blocking so are skipped in MIGRATE_ASYNC mode which just wastes CPU. Even when they can, it can be a waste of cycles when the pages are shared forcing higher scan rates. This patch avoids marking shared dirty pages for hinting faults but also will skip a migration if the page was dirtied after the scanner updated a clean page. This is most noticeable running the NASA Parallel Benchmark when backed by btrfs, the default root filesystem for some distributions, but also noticeable when using XFS. The following are results from a 4-socket machine running a 4.16-rc4 kernel with some scheduler patches that are pending for the next merge window. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 Time cg.D 459.07 ( 0.00%) 444.21 ( 3.24%) Time ep.D 76.96 ( 0.00%) 77.69 ( -0.95%) Time is.D 25.55 ( 0.00%) 27.85 ( -9.00%) Time lu.D 601.58 ( 0.00%) 596.87 ( 0.78%) Time mg.D 107.73 ( 0.00%) 108.22 ( -0.45%) is.D regresses slightly in terms of absolute time but note that that particular load varies quite a bit from run to run. The more relevant observation is the total system CPU usage. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 User 71471.91 70627.04 System 11078.96 8256.13 Elapsed 661.66 632.74 That is a substantial drop in system CPU usage and overall the workload completes faster. The NUMA balancing statistics are also interesting NUMA base PTE updates 111407972 139848884 NUMA huge PMD updates 206506 264869 NUMA page range updates 217139044 275461812 NUMA hint faults 4300924 3719784 NUMA hint local faults 3012539 3416618 NUMA hint local percent 70 91 NUMA pages migrated 1517487 1358420 While more PTEs are scanned due to changes in what faults are gathered, it's clear that a far higher percentage of faults are local as the bulk of the remote hits were dirty pages that, in this case with btrfs, had no chance of migrating. The following is a comparison when using XFS as that is a more realistic filesystem choice for a data partition 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1r47 Time cg.D 485.28 ( 0.00%) 442.62 ( 8.79%) Time ep.D 77.68 ( 0.00%) 77.54 ( 0.18%) Time is.D 26.44 ( 0.00%) 24.79 ( 6.24%) Time lu.D 597.46 ( 0.00%) 597.11 ( 0.06%) Time mg.D 142.65 ( 0.00%) 105.83 ( 25.81%) That is a reasonable gain on two relatively long-lived workloads. While not presented, there is also a substantial drop in system CPu usage and the NUMA balancing stats show similar improvements in locality as btrfs did. Link: http://lkml.kernel.org/r/20180326094334.zserdec62gwmmfqf@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11Documentation/vm/hmm.txt: typos and syntaxes fixesJérôme Glisse1-54/+54
This fix typos and syntaxes, thanks to Randy Dunlap for pointing them out (they were all my faults). Link: http://lkml.kernel.org/r/20180409151859.4713-1-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: fix header file if/else/endif maze, againArnd Bergmann1-9/+12
The last fix was still wrong, as we need the inline dummy functions also for the case that CONFIG_HMM is enabled but CONFIG_HMM_MIRROR is not: kernel/fork.o: In function `__mmdrop': fork.c:(.text+0x14f6): undefined reference to `hmm_mm_destroy' This adds back the second copy of the dummy functions, hopefully this time in the right place. Link: http://lkml.kernel.org/r/20180404110236.804484-1-arnd@arndb.de Fixes: 8900d06a277a ("mm/hmm: fix header file if/else/endif maze") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm.c: remove superfluous RCU protection around radix tree lookupTejun Heo1-10/+2
hmm_devmem_find() requires rcu_read_lock_held() but there's nothing which actually uses the RCU protection. The only caller is hmm_devmem_pages_create() which already grabs the mutex and does superfluous rcu_read_lock/unlock() around the function. This doesn't add anything and just adds to confusion. Remove the RCU protection and open-code the radix tree lookup. If this needs to become more sophisticated in the future, let's add them back when necessary. Link: http://lkml.kernel.org/r/20180314194515.1661824-4-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Benjamin LaHaise <bcrl@kvack.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: use device driver encoding for HMM pfnJérôme Glisse2-77/+152
Users of hmm_vma_fault() and hmm_vma_get_pfns() provide a flags array and pfn shift value allowing them to define their own encoding for HMM pfn that are fill inside the pfns array of the hmm_range struct. With this device driver can get pfn that match their own private encoding out of HMM without having to do any conversion. [rcampbell@nvidia.com: don't ignore specific pte fault flag in hmm_vma_fault()] Link: http://lkml.kernel.org/r/20180326213009.2460-2-jglisse@redhat.com [rcampbell@nvidia.com: clarify fault logic for device private memory] Link: http://lkml.kernel.org/r/20180326213009.2460-3-jglisse@redhat.com Link: http://lkml.kernel.org/r/20180323005527.758-16-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: change hmm_vma_fault() to allow write fault on page basisJérôme Glisse2-34/+119
This changes hmm_vma_fault() to not take a global write fault flag for a range but instead rely on caller to populate HMM pfns array with proper fault flag ie HMM_PFN_VALID if driver want read fault for that address or HMM_PFN_VALID and HMM_PFN_WRITE for write. Moreover by setting HMM_PFN_DEVICE_PRIVATE the device driver can ask for device private memory to be migrated back to system memory through page fault. This is more flexible API and it better reflects how device handles and reports fault. Link: http://lkml.kernel.org/r/20180323005527.758-15-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: factor out pte and pmd handling to simplify hmm_vma_walk_pmd()Jérôme Glisse1-72/+102
No functional change, just create one function to handle pmd and one to handle pte (hmm_vma_handle_pmd() and hmm_vma_handle_pte()). Link: http://lkml.kernel.org/r/20180323005527.758-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: move hmm_pfns_clear() closer to where it is usedJérôme Glisse1-8/+8
Move hmm_pfns_clear() closer to where it is used to make it clear it is not use by page table walkers. Link: http://lkml.kernel.org/r/20180323005527.758-13-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: rename HMM_PFN_DEVICE_UNADDRESSABLE to HMM_PFN_DEVICE_PRIVATEJérôme Glisse2-3/+3
Make naming consistent across code, DEVICE_PRIVATE is the name use outside HMM code so use that one. Link: http://lkml.kernel.org/r/20180323005527.758-12-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: do not differentiate between empty entry or missing directoryJérôme Glisse2-35/+18
There is no point in differentiating between a range for which there is not even a directory (and thus entries) and empty entry (pte_none() or pmd_none() returns true). Simply drop the distinction ie remove HMM_PFN_EMPTY flag and merge now duplicate hmm_vma_walk_hole() and hmm_vma_walk_clear() functions. Link: http://lkml.kernel.org/r/20180323005527.758-11-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: cleanup special vma handling (VM_SPECIAL)Jérôme Glisse1-20/+20
Special vma (one with any of the VM_SPECIAL flags) can not be access by device because there is no consistent model across device drivers on those vma and their backing memory. This patch directly use hmm_range struct for hmm_pfns_special() argument as it is always affecting the whole vma and thus the whole range. It also make behavior consistent after this patch both hmm_vma_fault() and hmm_vma_get_pfns() returns -EINVAL when facing such vma. Previously hmm_vma_fault() returned 0 and hmm_vma_get_pfns() return -EINVAL but both were filling the HMM pfn array with special entry. Link: http://lkml.kernel.org/r/20180323005527.758-10-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: use uint64_t for HMM pfn instead of defining hmm_pfn_t to ulongJérôme Glisse2-38/+34
All device driver we care about are using 64bits page table entry. In order to match this and to avoid useless define convert all HMM pfn to directly use uint64_t. It is a first step on the road to allow driver to directly use pfn value return by HMM (saving memory and CPU cycles use for conversion between the two). Link: http://lkml.kernel.org/r/20180323005527.758-9-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: remove HMM_PFN_READ flag and ignore peculiar architectureJérôme Glisse2-19/+41
Only peculiar architecture allow write without read thus assume that any valid pfn do allow for read. Note we do not care for write only because it does make sense with thing like atomic compare and exchange or any other operations that allow you to get the memory value through them. Link: http://lkml.kernel.org/r/20180323005527.758-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: use struct for hmm_vma_fault(), hmm_vma_get_pfns() parametersJérôme Glisse2-63/+33
Both hmm_vma_fault() and hmm_vma_get_pfns() were taking a hmm_range struct as parameter and were initializing that struct with others of their parameters. Have caller of those function do this as they are likely to already do and only pass this struct to both function this shorten function signature and make it easier in the future to add new parameters by simply adding them to the structure. Link: http://lkml.kernel.org/r/20180323005527.758-7-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: hmm_pfns_bad() was accessing wrong structJérôme Glisse1-1/+2
The private field of mm_walk struct point to an hmm_vma_walk struct and not to the hmm_range struct desired. Fix to get proper struct pointer. Link: http://lkml.kernel.org/r/20180323005527.758-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: unregister mmu_notifier when last HMM client quitJérôme Glisse1-3/+35
This code was lost in translation at one point. This properly call mmu_notifier_unregister_no_release() once last user is gone. This fix the zombie mm_struct as without this patch we do not drop the refcount we have on it. Link: http://lkml.kernel.org/r/20180323005527.758-5-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: HMM should have a callback before MM is destroyedRalph Campbell2-1/+38
hmm_mirror_register() registers a callback for when the CPU pagetable is modified. Normally, the device driver will call hmm_mirror_unregister() when the process using the device is finished. However, if the process exits uncleanly, the struct_mm can be destroyed with no warning to the device driver. Link: http://lkml.kernel.org/r/20180323005527.758-4-jglisse@redhat.com Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11mm/hmm: fix header file if/else/endif mazeJérôme Glisse1-8/+1
The #if/#else/#endif for IS_ENABLED(CONFIG_HMM) were wrong. Because of this after multiple include there was multiple definition of both hmm_mm_init() and hmm_mm_destroy() leading to build failure if HMM was enabled (CONFIG_HMM set). Link: http://lkml.kernel.org/r/20180323005527.758-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>