diff options
Diffstat (limited to 'kernel')
56 files changed, 5130 insertions, 389 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index d2001624fe7a..04bc07c2b42a 100644 --- a/kernel/Makefile +++ b/kernel/Makefile @@ -41,6 +41,7 @@ obj-y += printk/ obj-y += irq/ obj-y += rcu/ obj-y += livepatch/ +obj-y += dma/ obj-$(CONFIG_CHECKPOINT_RESTORE) += kcmp.o obj-$(CONFIG_FREEZER) += freezer.o diff --git a/kernel/auditsc.c b/kernel/auditsc.c index ceb1c4596c51..80d672a11088 100644 --- a/kernel/auditsc.c +++ b/kernel/auditsc.c @@ -1279,8 +1279,12 @@ static void show_special(struct audit_context *context, int *call_panic) break; case AUDIT_KERN_MODULE: audit_log_format(ab, "name="); - audit_log_untrustedstring(ab, context->module.name); - kfree(context->module.name); + if (context->module.name) { + audit_log_untrustedstring(ab, context->module.name); + kfree(context->module.name); + } else + audit_log_format(ab, "(null)"); + break; } audit_log_end(ab); @@ -2411,8 +2415,9 @@ void __audit_log_kern_module(char *name) { struct audit_context *context = audit_context(); - context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL); - strcpy(context->module.name, name); + context->module.name = kstrdup(name, GFP_KERNEL); + if (!context->module.name) + audit_log_lost("out of memory in __audit_log_kern_module"); context->type = AUDIT_KERN_MODULE; } diff --git a/kernel/bpf/arraymap.c b/kernel/bpf/arraymap.c index 544e58f5f642..2aa55d030c77 100644 --- a/kernel/bpf/arraymap.c +++ b/kernel/bpf/arraymap.c @@ -378,7 +378,7 @@ static int array_map_check_btf(const struct bpf_map *map, const struct btf *btf, return -EINVAL; value_type = btf_type_id_size(btf, &btf_value_id, &value_size); - if (!value_type || value_size > map->value_size) + if (!value_type || value_size != map->value_size) return -EINVAL; return 0; diff --git a/kernel/bpf/btf.c b/kernel/bpf/btf.c index 2d49d18b793a..2590700237c1 100644 --- a/kernel/bpf/btf.c +++ b/kernel/bpf/btf.c @@ -450,7 +450,7 @@ static const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) */ static bool btf_type_int_is_regular(const struct btf_type *t) { - u16 nr_bits, nr_bytes; + u8 nr_bits, nr_bytes; u32 int_data; int_data = btf_type_int(t); @@ -991,38 +991,38 @@ static void btf_int_bits_seq_show(const struct btf *btf, void *data, u8 bits_offset, struct seq_file *m) { + u16 left_shift_bits, right_shift_bits; u32 int_data = btf_type_int(t); - u16 nr_bits = BTF_INT_BITS(int_data); - u16 total_bits_offset; - u16 nr_copy_bytes; - u16 nr_copy_bits; - u8 nr_upper_bits; - union { - u64 u64_num; - u8 u8_nums[8]; - } print_num; + u8 nr_bits = BTF_INT_BITS(int_data); + u8 total_bits_offset; + u8 nr_copy_bytes; + u8 nr_copy_bits; + u64 print_num; + /* + * bits_offset is at most 7. + * BTF_INT_OFFSET() cannot exceed 64 bits. + */ total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); data += BITS_ROUNDDOWN_BYTES(total_bits_offset); bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); nr_copy_bits = nr_bits + bits_offset; nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); - print_num.u64_num = 0; - memcpy(&print_num.u64_num, data, nr_copy_bytes); - - /* Ditch the higher order bits */ - nr_upper_bits = BITS_PER_BYTE_MASKED(nr_copy_bits); - if (nr_upper_bits) { - /* We need to mask out some bits of the upper byte. */ - u8 mask = (1 << nr_upper_bits) - 1; + print_num = 0; + memcpy(&print_num, data, nr_copy_bytes); - print_num.u8_nums[nr_copy_bytes - 1] &= mask; - } +#ifdef __BIG_ENDIAN_BITFIELD + left_shift_bits = bits_offset; +#else + left_shift_bits = BITS_PER_U64 - nr_copy_bits; +#endif + right_shift_bits = BITS_PER_U64 - nr_bits; - print_num.u64_num >>= bits_offset; + print_num <<= left_shift_bits; + print_num >>= right_shift_bits; - seq_printf(m, "0x%llx", print_num.u64_num); + seq_printf(m, "0x%llx", print_num); } static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, @@ -1032,7 +1032,7 @@ static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, u32 int_data = btf_type_int(t); u8 encoding = BTF_INT_ENCODING(int_data); bool sign = encoding & BTF_INT_SIGNED; - u32 nr_bits = BTF_INT_BITS(int_data); + u8 nr_bits = BTF_INT_BITS(int_data); if (bits_offset || BTF_INT_OFFSET(int_data) || BITS_PER_BYTE_MASKED(nr_bits)) { @@ -1519,9 +1519,9 @@ static s32 btf_struct_check_meta(struct btf_verifier_env *env, { bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; const struct btf_member *member; + u32 meta_needed, last_offset; struct btf *btf = env->btf; u32 struct_size = t->size; - u32 meta_needed; u16 i; meta_needed = btf_type_vlen(t) * sizeof(*member); @@ -1534,6 +1534,7 @@ static s32 btf_struct_check_meta(struct btf_verifier_env *env, btf_verifier_log_type(env, t, NULL); + last_offset = 0; for_each_member(i, t, member) { if (!btf_name_offset_valid(btf, member->name_off)) { btf_verifier_log_member(env, t, member, @@ -1555,6 +1556,16 @@ static s32 btf_struct_check_meta(struct btf_verifier_env *env, return -EINVAL; } + /* + * ">" instead of ">=" because the last member could be + * "char a[0];" + */ + if (last_offset > member->offset) { + btf_verifier_log_member(env, t, member, + "Invalid member bits_offset"); + return -EINVAL; + } + if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) { btf_verifier_log_member(env, t, member, "Memmber bits_offset exceeds its struct size"); @@ -1562,6 +1573,7 @@ static s32 btf_struct_check_meta(struct btf_verifier_env *env, } btf_verifier_log_member(env, t, member, NULL); + last_offset = member->offset; } return meta_needed; diff --git a/kernel/bpf/cgroup.c b/kernel/bpf/cgroup.c index f7c00bd6f8e4..3d83ee7df381 100644 --- a/kernel/bpf/cgroup.c +++ b/kernel/bpf/cgroup.c @@ -428,6 +428,60 @@ int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, return ret; } +int cgroup_bpf_prog_attach(const union bpf_attr *attr, + enum bpf_prog_type ptype, struct bpf_prog *prog) +{ + struct cgroup *cgrp; + int ret; + + cgrp = cgroup_get_from_fd(attr->target_fd); + if (IS_ERR(cgrp)) + return PTR_ERR(cgrp); + + ret = cgroup_bpf_attach(cgrp, prog, attr->attach_type, + attr->attach_flags); + cgroup_put(cgrp); + return ret; +} + +int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) +{ + struct bpf_prog *prog; + struct cgroup *cgrp; + int ret; + + cgrp = cgroup_get_from_fd(attr->target_fd); + if (IS_ERR(cgrp)) + return PTR_ERR(cgrp); + + prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); + if (IS_ERR(prog)) + prog = NULL; + + ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0); + if (prog) + bpf_prog_put(prog); + + cgroup_put(cgrp); + return ret; +} + +int cgroup_bpf_prog_query(const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + struct cgroup *cgrp; + int ret; + + cgrp = cgroup_get_from_fd(attr->query.target_fd); + if (IS_ERR(cgrp)) + return PTR_ERR(cgrp); + + ret = cgroup_bpf_query(cgrp, attr, uattr); + + cgroup_put(cgrp); + return ret; +} + /** * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering * @sk: The socket sending or receiving traffic diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c index 9f1493705f40..1e5625d46414 100644 --- a/kernel/bpf/core.c +++ b/kernel/bpf/core.c @@ -350,6 +350,20 @@ struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, return prog_adj; } +void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp) +{ + int i; + + for (i = 0; i < fp->aux->func_cnt; i++) + bpf_prog_kallsyms_del(fp->aux->func[i]); +} + +void bpf_prog_kallsyms_del_all(struct bpf_prog *fp) +{ + bpf_prog_kallsyms_del_subprogs(fp); + bpf_prog_kallsyms_del(fp); +} + #ifdef CONFIG_BPF_JIT /* All BPF JIT sysctl knobs here. */ int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON); @@ -1434,6 +1448,17 @@ static int bpf_check_tail_call(const struct bpf_prog *fp) return 0; } +static void bpf_prog_select_func(struct bpf_prog *fp) +{ +#ifndef CONFIG_BPF_JIT_ALWAYS_ON + u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1); + + fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1]; +#else + fp->bpf_func = __bpf_prog_ret0_warn; +#endif +} + /** * bpf_prog_select_runtime - select exec runtime for BPF program * @fp: bpf_prog populated with internal BPF program @@ -1444,13 +1469,13 @@ static int bpf_check_tail_call(const struct bpf_prog *fp) */ struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) { -#ifndef CONFIG_BPF_JIT_ALWAYS_ON - u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1); + /* In case of BPF to BPF calls, verifier did all the prep + * work with regards to JITing, etc. + */ + if (fp->bpf_func) + goto finalize; - fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1]; -#else - fp->bpf_func = __bpf_prog_ret0_warn; -#endif + bpf_prog_select_func(fp); /* eBPF JITs can rewrite the program in case constant * blinding is active. However, in case of error during @@ -1471,6 +1496,8 @@ struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) if (*err) return fp; } + +finalize: bpf_prog_lock_ro(fp); /* The tail call compatibility check can only be done at diff --git a/kernel/bpf/devmap.c b/kernel/bpf/devmap.c index a7cc7b3494a9..d361fc1e3bf3 100644 --- a/kernel/bpf/devmap.c +++ b/kernel/bpf/devmap.c @@ -334,10 +334,15 @@ int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, { struct net_device *dev = dst->dev; struct xdp_frame *xdpf; + int err; if (!dev->netdev_ops->ndo_xdp_xmit) return -EOPNOTSUPP; + err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); + if (unlikely(err)) + return err; + xdpf = convert_to_xdp_frame(xdp); if (unlikely(!xdpf)) return -EOVERFLOW; @@ -345,6 +350,20 @@ int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp, return bq_enqueue(dst, xdpf, dev_rx); } +int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, + struct bpf_prog *xdp_prog) +{ + int err; + + err = xdp_ok_fwd_dev(dst->dev, skb->len); + if (unlikely(err)) + return err; + skb->dev = dst->dev; + generic_xdp_tx(skb, xdp_prog); + + return 0; +} + static void *dev_map_lookup_elem(struct bpf_map *map, void *key) { struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); diff --git a/kernel/bpf/hashtab.c b/kernel/bpf/hashtab.c index 3ca2198a6d22..513d9dfcf4ee 100644 --- a/kernel/bpf/hashtab.c +++ b/kernel/bpf/hashtab.c @@ -747,13 +747,15 @@ static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, * old element will be freed immediately. * Otherwise return an error */ - atomic_dec(&htab->count); - return ERR_PTR(-E2BIG); + l_new = ERR_PTR(-E2BIG); + goto dec_count; } l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN, htab->map.numa_node); - if (!l_new) - return ERR_PTR(-ENOMEM); + if (!l_new) { + l_new = ERR_PTR(-ENOMEM); + goto dec_count; + } } memcpy(l_new->key, key, key_size); @@ -766,7 +768,8 @@ static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, GFP_ATOMIC | __GFP_NOWARN); if (!pptr) { kfree(l_new); - return ERR_PTR(-ENOMEM); + l_new = ERR_PTR(-ENOMEM); + goto dec_count; } } @@ -780,6 +783,9 @@ static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, l_new->hash = hash; return l_new; +dec_count: + atomic_dec(&htab->count); + return l_new; } static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, diff --git a/kernel/bpf/sockmap.c b/kernel/bpf/sockmap.c index 52a91d816c0e..98fb7938beea 100644 --- a/kernel/bpf/sockmap.c +++ b/kernel/bpf/sockmap.c @@ -72,6 +72,7 @@ struct bpf_htab { u32 n_buckets; u32 elem_size; struct bpf_sock_progs progs; + struct rcu_head rcu; }; struct htab_elem { @@ -89,8 +90,8 @@ enum smap_psock_state { struct smap_psock_map_entry { struct list_head list; struct sock **entry; - struct htab_elem *hash_link; - struct bpf_htab *htab; + struct htab_elem __rcu *hash_link; + struct bpf_htab __rcu *htab; }; struct smap_psock { @@ -120,6 +121,7 @@ struct smap_psock { struct bpf_prog *bpf_parse; struct bpf_prog *bpf_verdict; struct list_head maps; + spinlock_t maps_lock; /* Back reference used when sock callback trigger sockmap operations */ struct sock *sock; @@ -140,6 +142,7 @@ static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); static int bpf_tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags); +static void bpf_tcp_close(struct sock *sk, long timeout); static inline struct smap_psock *smap_psock_sk(const struct sock *sk) { @@ -161,7 +164,42 @@ out: return !empty; } -static struct proto tcp_bpf_proto; +enum { + SOCKMAP_IPV4, + SOCKMAP_IPV6, + SOCKMAP_NUM_PROTS, +}; + +enum { + SOCKMAP_BASE, + SOCKMAP_TX, + SOCKMAP_NUM_CONFIGS, +}; + +static struct proto *saved_tcpv6_prot __read_mostly; +static DEFINE_SPINLOCK(tcpv6_prot_lock); +static struct proto bpf_tcp_prots[SOCKMAP_NUM_PROTS][SOCKMAP_NUM_CONFIGS]; +static void build_protos(struct proto prot[SOCKMAP_NUM_CONFIGS], + struct proto *base) +{ + prot[SOCKMAP_BASE] = *base; + prot[SOCKMAP_BASE].close = bpf_tcp_close; + prot[SOCKMAP_BASE].recvmsg = bpf_tcp_recvmsg; + prot[SOCKMAP_BASE].stream_memory_read = bpf_tcp_stream_read; + + prot[SOCKMAP_TX] = prot[SOCKMAP_BASE]; + prot[SOCKMAP_TX].sendmsg = bpf_tcp_sendmsg; + prot[SOCKMAP_TX].sendpage = bpf_tcp_sendpage; +} + +static void update_sk_prot(struct sock *sk, struct smap_psock *psock) +{ + int family = sk->sk_family == AF_INET6 ? SOCKMAP_IPV6 : SOCKMAP_IPV4; + int conf = psock->bpf_tx_msg ? SOCKMAP_TX : SOCKMAP_BASE; + + sk->sk_prot = &bpf_tcp_prots[family][conf]; +} + static int bpf_tcp_init(struct sock *sk) { struct smap_psock *psock; @@ -181,14 +219,17 @@ static int bpf_tcp_init(struct sock *sk) psock->save_close = sk->sk_prot->close; psock->sk_proto = sk->sk_prot; - if (psock->bpf_tx_msg) { - tcp_bpf_proto.sendmsg = bpf_tcp_sendmsg; - tcp_bpf_proto.sendpage = bpf_tcp_sendpage; - tcp_bpf_proto.recvmsg = bpf_tcp_recvmsg; - tcp_bpf_proto.stream_memory_read = bpf_tcp_stream_read; + /* Build IPv6 sockmap whenever the address of tcpv6_prot changes */ + if (sk->sk_family == AF_INET6 && + unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { + spin_lock_bh(&tcpv6_prot_lock); + if (likely(sk->sk_prot != saved_tcpv6_prot)) { + build_protos(bpf_tcp_prots[SOCKMAP_IPV6], sk->sk_prot); + smp_store_release(&saved_tcpv6_prot, sk->sk_prot); + } + spin_unlock_bh(&tcpv6_prot_lock); } - - sk->sk_prot = &tcp_bpf_proto; + update_sk_prot(sk, psock); rcu_read_unlock(); return 0; } @@ -219,24 +260,64 @@ out: rcu_read_unlock(); } +static struct htab_elem *lookup_elem_raw(struct hlist_head *head, + u32 hash, void *key, u32 key_size) +{ + struct htab_elem *l; + + hlist_for_each_entry_rcu(l, head, hash_node) { + if (l->hash == hash && !memcmp(&l->key, key, key_size)) + return l; + } + + return NULL; +} + +static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) +{ + return &htab->buckets[hash & (htab->n_buckets - 1)]; +} + +static inline struct hlist_head *select_bucket(struct bpf_htab *htab, u32 hash) +{ + return &__select_bucket(htab, hash)->head; +} + static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) { atomic_dec(&htab->count); kfree_rcu(l, rcu); } +static struct smap_psock_map_entry *psock_map_pop(struct sock *sk, + struct smap_psock *psock) +{ + struct smap_psock_map_entry *e; + + spin_lock_bh(&psock->maps_lock); + e = list_first_entry_or_null(&psock->maps, + struct smap_psock_map_entry, + list); + if (e) + list_del(&e->list); + spin_unlock_bh(&psock->maps_lock); + return e; +} + static void bpf_tcp_close(struct sock *sk, long timeout) { void (*close_fun)(struct sock *sk, long timeout); - struct smap_psock_map_entry *e, *tmp; + struct smap_psock_map_entry *e; struct sk_msg_buff *md, *mtmp; struct smap_psock *psock; struct sock *osk; + lock_sock(sk); rcu_read_lock(); psock = smap_psock_sk(sk); if (unlikely(!psock)) { rcu_read_unlock(); + release_sock(sk); return sk->sk_prot->close(sk, timeout); } @@ -247,7 +328,6 @@ static void bpf_tcp_close(struct sock *sk, long timeout) */ close_fun = psock->save_close; - write_lock_bh(&sk->sk_callback_lock); if (psock->cork) { free_start_sg(psock->sock, psock->cork); kfree(psock->cork); @@ -260,21 +340,40 @@ static void bpf_tcp_close(struct sock *sk, long timeout) kfree(md); } - list_for_each_entry_safe(e, tmp, &psock->maps, list) { + e = psock_map_pop(sk, psock); + while (e) { if (e->entry) { osk = cmpxchg(e->entry, sk, NULL); if (osk == sk) { - list_del(&e->list); smap_release_sock(psock, sk); } } else { - hlist_del_rcu(&e->hash_link->hash_node); - smap_release_sock(psock, e->hash_link->sk); - free_htab_elem(e->htab, e->hash_link); + struct htab_elem *link = rcu_dereference(e->hash_link); + struct bpf_htab *htab = rcu_dereference(e->htab); + struct hlist_head *head; + struct htab_elem *l; + struct bucket *b; + + b = __select_bucket(htab, link->hash); + head = &b->head; + raw_spin_lock_bh(&b->lock); + l = lookup_elem_raw(head, + link->hash, link->key, + htab->map.key_size); + /* If another thread deleted this object skip deletion. + * The refcnt on psock may or may not be zero. + */ + if (l) { + hlist_del_rcu(&link->hash_node); + smap_release_sock(psock, link->sk); + free_htab_elem(htab, link); + } + raw_spin_unlock_bh(&b->lock); } + e = psock_map_pop(sk, psock); } - write_unlock_bh(&sk->sk_callback_lock); rcu_read_unlock(); + release_sock(sk); close_fun(sk, timeout); } @@ -472,7 +571,8 @@ static int free_sg(struct sock *sk, int start, struct sk_msg_buff *md) while (sg[i].length) { free += sg[i].length; sk_mem_uncharge(sk, sg[i].length); - put_page(sg_page(&sg[i])); + if (!md->skb) + put_page(sg_page(&sg[i])); sg[i].length = 0; sg[i].page_link = 0; sg[i].offset = 0; @@ -481,6 +581,8 @@ static int free_sg(struct sock *sk, int start, struct sk_msg_buff *md) if (i == MAX_SKB_FRAGS) i = 0; } + if (md->skb) + consume_skb(md->skb); return free; } @@ -1111,8 +1213,7 @@ static void bpf_tcp_msg_add(struct smap_psock *psock, static int bpf_tcp_ulp_register(void) { - tcp_bpf_proto = tcp_prot; - tcp_bpf_proto.close = bpf_tcp_close; + build_protos(bpf_tcp_prots[SOCKMAP_IPV4], &tcp_prot); /* Once BPF TX ULP is registered it is never unregistered. It * will be in the ULP list for the lifetime of the system. Doing * duplicate registers is not a problem. @@ -1135,7 +1236,7 @@ static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb) */ TCP_SKB_CB(skb)->bpf.sk_redir = NULL; skb->sk = psock->sock; - bpf_compute_data_pointers(skb); + bpf_compute_data_end_sk_skb(skb); preempt_disable(); rc = (*prog->bpf_func)(skb, prog->insnsi); preempt_enable(); @@ -1357,7 +1458,9 @@ static void smap_release_sock(struct smap_psock *psock, struct sock *sock) { if (refcount_dec_and_test(&psock->refcnt)) { tcp_cleanup_ulp(sock); + write_lock_bh(&sock->sk_callback_lock); smap_stop_sock(psock, sock); + write_unlock_bh(&sock->sk_callback_lock); clear_bit(SMAP_TX_RUNNING, &psock->state); rcu_assign_sk_user_data(sock, NULL); call_rcu_sched(&psock->rcu, smap_destroy_psock); @@ -1388,7 +1491,7 @@ static int smap_parse_func_strparser(struct strparser *strp, * any socket yet. */ skb->sk = psock->sock; - bpf_compute_data_pointers(skb); + bpf_compute_data_end_sk_skb(skb); rc = (*prog->bpf_func)(skb, prog->insnsi); skb->sk = NULL; rcu_read_unlock(); @@ -1508,6 +1611,7 @@ static struct smap_psock *smap_init_psock(struct sock *sock, int node) INIT_LIST_HEAD(&psock->maps); INIT_LIST_HEAD(&psock->ingress); refcount_set(&psock->refcnt, 1); + spin_lock_init(&psock->maps_lock); rcu_assign_sk_user_data(sock, psock); sock_hold(sock); @@ -1564,18 +1668,32 @@ free_stab: return ERR_PTR(err); } -static void smap_list_remove(struct smap_psock *psock, - struct sock **entry, - struct htab_elem *hash_link) +static void smap_list_map_remove(struct smap_psock *psock, + struct sock **entry) { struct smap_psock_map_entry *e, *tmp; + spin_lock_bh(&psock->maps_lock); list_for_each_entry_safe(e, tmp, &psock->maps, list) { - if (e->entry == entry || e->hash_link == hash_link) { + if (e->entry == entry) + list_del(&e->list); + } + spin_unlock_bh(&psock->maps_lock); +} + +static void smap_list_hash_remove(struct smap_psock *psock, + struct htab_elem *hash_link) +{ + struct smap_psock_map_entry *e, *tmp; + + spin_lock_bh(&psock->maps_lock); + list_for_each_entry_safe(e, tmp, &psock->maps, list) { + struct htab_elem *c = rcu_dereference(e->hash_link); + + if (c == hash_link) list_del(&e->list); - break; - } } + spin_unlock_bh(&psock->maps_lock); } static void sock_map_free(struct bpf_map *map) @@ -1601,7 +1719,6 @@ static void sock_map_free(struct bpf_map *map) if (!sock) continue; - write_lock_bh(&sock->sk_callback_lock); psock = smap_psock_sk(sock); /* This check handles a racing sock event that can get the * sk_callback_lock before this case but after xchg happens @@ -1609,10 +1726,9 @@ static void sock_map_free(struct bpf_map *map) * to be null and queued for garbage collection. */ if (likely(psock)) { - smap_list_remove(psock, &stab->sock_map[i], NULL); + smap_list_map_remove(psock, &stab->sock_map[i]); smap_release_sock(psock, sock); } - write_unlock_bh(&sock->sk_callback_lock); } rcu_read_unlock(); @@ -1661,17 +1777,15 @@ static int sock_map_delete_elem(struct bpf_map *map, void *key) if (!sock) return -EINVAL; - write_lock_bh(&sock->sk_callback_lock); psock = smap_psock_sk(sock); if (!psock) goto out; if (psock->bpf_parse) smap_stop_sock(psock, sock); - smap_list_remove(psock, &stab->sock_map[k], NULL); + smap_list_map_remove(psock, &stab->sock_map[k]); smap_release_sock(psock, sock); out: - write_unlock_bh(&sock->sk_callback_lock); return 0; } @@ -1752,7 +1866,6 @@ static int __sock_map_ctx_update_elem(struct bpf_map *map, } } - write_lock_bh(&sock->sk_callback_lock); psock = smap_psock_sk(sock); /* 2. Do not allow inheriting programs if psock exists and has @@ -1789,7 +1902,7 @@ static int __sock_map_ctx_update_elem(struct bpf_map *map, e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN); if (!e) { err = -ENOMEM; - goto out_progs; + goto out_free; } } @@ -1809,7 +1922,9 @@ static int __sock_map_ctx_update_elem(struct bpf_map *map, if (err) goto out_free; smap_init_progs(psock, verdict, parse); + write_lock_bh(&sock->sk_callback_lock); smap_start_sock(psock, sock); + write_unlock_bh(&sock->sk_callback_lock); } /* 4. Place psock in sockmap for use and stop any programs on @@ -1819,9 +1934,10 @@ static int __sock_map_ctx_update_elem(struct bpf_map *map, */ if (map_link) { e->entry = map_link; + spin_lock_bh(&psock->maps_lock); list_add_tail(&e->list, &psock->maps); + spin_unlock_bh(&psock->maps_lock); } - write_unlock_bh(&sock->sk_callback_lock); return err; out_free: smap_release_sock(psock, sock); @@ -1832,7 +1948,6 @@ out_progs: } if (tx_msg) bpf_prog_put(tx_msg); - write_unlock_bh(&sock->sk_callback_lock); kfree(e); return err; } @@ -1869,10 +1984,8 @@ static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops, if (osock) { struct smap_psock *opsock = smap_psock_sk(osock); - write_lock_bh(&osock->sk_callback_lock); - smap_list_remove(opsock, &stab->sock_map[i], NULL); + smap_list_map_remove(opsock, &stab->sock_map[i]); smap_release_sock(opsock, osock); - write_unlock_bh(&osock->sk_callback_lock); } out: return err; @@ -1915,6 +2028,24 @@ int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type) return 0; } +int sockmap_get_from_fd(const union bpf_attr *attr, int type, + struct bpf_prog *prog) +{ + int ufd = attr->target_fd; + struct bpf_map *map; + struct fd f; + int err; + + f = fdget(ufd); + map = __bpf_map_get(f); + if (IS_ERR(map)) + return PTR_ERR(map); + + err = sock_map_prog(map, prog, attr->attach_type); + fdput(f); + return err; +} + static void *sock_map_lookup(struct bpf_map *map, void *key) { return NULL; @@ -1944,7 +2075,13 @@ static int sock_map_update_elem(struct bpf_map *map, return -EOPNOTSUPP; } + lock_sock(skops.sk); + preempt_disable(); + rcu_read_lock(); err = sock_map_ctx_update_elem(&skops, map, key, flags); + rcu_read_unlock(); + preempt_enable(); + release_sock(skops.sk); fput(socket->file); return err; } @@ -2043,14 +2180,13 @@ free_htab: return ERR_PTR(err); } -static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) +static void __bpf_htab_free(struct rcu_head *rcu) { - return &htab->buckets[hash & (htab->n_buckets - 1)]; -} + struct bpf_htab *htab; -static inline struct hlist_head *select_bucket(struct bpf_htab *htab, u32 hash) -{ - return &__select_bucket(htab, hash)->head; + htab = container_of(rcu, struct bpf_htab, rcu); + bpf_map_area_free(htab->buckets); + kfree(htab); } static void sock_hash_free(struct bpf_map *map) @@ -2069,16 +2205,18 @@ static void sock_hash_free(struct bpf_map *map) */ rcu_read_lock(); for (i = 0; i < htab->n_buckets; i++) { - struct hlist_head *head = select_bucket(htab, i); + struct bucket *b = __select_bucket(htab, i); + struct hlist_head *head; struct hlist_node *n; struct htab_elem *l; + raw_spin_lock_bh(&b->lock); + head = &b->head; hlist_for_each_entry_safe(l, n, head, hash_node) { struct sock *sock = l->sk; struct smap_psock *psock; hlist_del_rcu(&l->hash_node); - write_lock_bh(&sock->sk_callback_lock); psock = smap_psock_sk(sock); /* This check handles a racing sock event that can get * the sk_callback_lock before this case but after xchg @@ -2086,16 +2224,15 @@ static void sock_hash_free(struct bpf_map *map) * (psock) to be null and queued for garbage collection. */ if (likely(psock)) { - smap_list_remove(psock, NULL, l); + smap_list_hash_remove(psock, l); smap_release_sock(psock, sock); } - write_unlock_bh(&sock->sk_callback_lock); - kfree(l); + free_htab_elem(htab, l); } + raw_spin_unlock_bh(&b->lock); } rcu_read_unlock(); - bpf_map_area_free(htab->buckets); - kfree(htab); + call_rcu(&htab->rcu, __bpf_htab_free); } static struct htab_elem *alloc_sock_hash_elem(struct bpf_htab *htab, @@ -2122,19 +2259,6 @@ static struct htab_elem *alloc_sock_hash_elem(struct bpf_htab *htab, return l_new; } -static struct htab_elem *lookup_elem_raw(struct hlist_head *head, - u32 hash, void *key, u32 key_size) -{ - struct htab_elem *l; - - hlist_for_each_entry_rcu(l, head, hash_node) { - if (l->hash == hash && !memcmp(&l->key, key, key_size)) - return l; - } - - return NULL; -} - static inline u32 htab_map_hash(const void *key, u32 key_len) { return jhash(key, key_len, 0); @@ -2230,7 +2354,10 @@ static int sock_hash_ctx_update_elem(struct bpf_sock_ops_kern *skops, if (err) goto err; - /* bpf_map_update_elem() can be called in_irq() */ + /* psock is valid here because otherwise above *ctx_update_elem would + * have thrown an error. It is safe to skip error check. + */ + psock = smap_psock_sk(sock); raw_spin_lock_bh(&b->lock); l_old = lookup_elem_raw(head, hash, key, key_size); if (l_old && map_flags == BPF_NOEXIST) { @@ -2248,15 +2375,12 @@ static int sock_hash_ctx_update_elem(struct bpf_sock_ops_kern *skops, goto bucket_err; } - psock = smap_psock_sk(sock); - if (unlikely(!psock)) { - err = -EINVAL; - goto bucket_err; - } - - e->hash_link = l_new; - e->htab = container_of(map, struct bpf_htab, map); + rcu_assign_pointer(e->hash_link, l_new); + rcu_assign_pointer(e->htab, + container_of(map, struct bpf_htab, map)); + spin_lock_bh(&psock->maps_lock); list_add_tail(&e->list, &psock->maps); + spin_unlock_bh(&psock->maps_lock); /* add new element to the head of the list, so that * concurrent search will find it before old elem @@ -2266,19 +2390,17 @@ static int sock_hash_ctx_update_elem(struct bpf_sock_ops_kern *skops, psock = smap_psock_sk(l_old->sk); hlist_del_rcu(&l_old->hash_node); - smap_list_remove(psock, NULL, l_old); + smap_list_hash_remove(psock, l_old); smap_release_sock(psock, l_old->sk); free_htab_elem(htab, l_old); } raw_spin_unlock_bh(&b->lock); return 0; bucket_err: + smap_release_sock(psock, sock); raw_spin_unlock_bh(&b->lock); err: kfree(e); - psock = smap_psock_sk(sock); - if (psock) - smap_release_sock(psock, sock); return err; } @@ -2300,7 +2422,13 @@ static int sock_hash_update_elem(struct bpf_map *map, return -EINVAL; } + lock_sock(skops.sk); + preempt_disable(); + rcu_read_lock(); err = sock_hash_ctx_update_elem(&skops, map, key, flags); + rcu_read_unlock(); + preempt_enable(); + release_sock(skops.sk); fput(socket->file); return err; } @@ -2326,7 +2454,6 @@ static int sock_hash_delete_elem(struct bpf_map *map, void *key) struct smap_psock *psock; hlist_del_rcu(&l->hash_node); - write_lock_bh(&sock->sk_callback_lock); psock = smap_psock_sk(sock); /* This check handles a racing sock event that can get the * sk_callback_lock before this case but after xchg happens @@ -2334,10 +2461,9 @@ static int sock_hash_delete_elem(struct bpf_map *map, void *key) * to be null and queued for garbage collection. */ if (likely(psock)) { - smap_list_remove(psock, NULL, l); + smap_list_hash_remove(psock, l); smap_release_sock(psock, sock); } - write_unlock_bh(&sock->sk_callback_lock); free_htab_elem(htab, l); ret = 0; } @@ -2359,10 +2485,8 @@ struct sock *__sock_hash_lookup_elem(struct bpf_map *map, void *key) b = __select_bucket(htab, hash); head = &b->head; - raw_spin_lock_bh(&b->lock); l = lookup_elem_raw(head, hash, key, key_size); sk = l ? l->sk : NULL; - raw_spin_unlock_bh(&b->lock); return sk; } @@ -2383,6 +2507,7 @@ const struct bpf_map_ops sock_hash_ops = { .map_get_next_key = sock_hash_get_next_key, .map_update_elem = sock_hash_update_elem, .map_delete_elem = sock_hash_delete_elem, + .map_release_uref = sock_map_release, }; BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock, diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c index 0fa20624707f..a31a1ba0f8ea 100644 --- a/kernel/bpf/syscall.c +++ b/kernel/bpf/syscall.c @@ -735,7 +735,9 @@ static int map_update_elem(union bpf_attr *attr) if (bpf_map_is_dev_bound(map)) { err = bpf_map_offload_update_elem(map, key, value, attr->flags); goto out; - } else if (map->map_type == BPF_MAP_TYPE_CPUMAP) { + } else if (map->map_type == BPF_MAP_TYPE_CPUMAP || + map->map_type == BPF_MAP_TYPE_SOCKHASH || + map->map_type == BPF_MAP_TYPE_SOCKMAP) { err = map->ops->map_update_elem(map, key, value, attr->flags); goto out; } @@ -1034,14 +1036,9 @@ static void __bpf_prog_put_rcu(struct rcu_head *rcu) static void __bpf_prog_put(struct bpf_prog *prog, bool do_idr_lock) { if (atomic_dec_and_test(&prog->aux->refcnt)) { - int i; - /* bpf_prog_free_id() must be called first */ bpf_prog_free_id(prog, do_idr_lock); - - for (i = 0; i < prog->aux->func_cnt; i++) - bpf_prog_kallsyms_del(prog->aux->func[i]); - bpf_prog_kallsyms_del(prog); + bpf_prog_kallsyms_del_all(prog); call_rcu(&prog->aux->rcu, __bpf_prog_put_rcu); } @@ -1358,9 +1355,7 @@ static int bpf_prog_load(union bpf_attr *attr) if (err < 0) goto free_used_maps; - /* eBPF program is ready to be JITed */ - if (!prog->bpf_func) - prog = bpf_prog_select_runtime(prog, &err); + prog = bpf_prog_select_runtime(prog, &err); if (err < 0) goto free_used_maps; @@ -1384,6 +1379,7 @@ static int bpf_prog_load(union bpf_attr *attr) return err; free_used_maps: + bpf_prog_kallsyms_del_subprogs(prog); free_used_maps(prog->aux); free_prog: bpf_prog_uncharge_memlock(prog); @@ -1489,8 +1485,6 @@ out_free_tp: return err; } -#ifdef CONFIG_CGROUP_BPF - static int bpf_prog_attach_check_attach_type(const struct bpf_prog *prog, enum bpf_attach_type attach_type) { @@ -1505,40 +1499,6 @@ static int bpf_prog_attach_check_attach_type(const struct bpf_prog *prog, #define BPF_PROG_ATTACH_LAST_FIELD attach_flags -static int sockmap_get_from_fd(const union bpf_attr *attr, - int type, bool attach) -{ - struct bpf_prog *prog = NULL; - int ufd = attr->target_fd; - struct bpf_map *map; - struct fd f; - int err; - - f = fdget(ufd); - map = __bpf_map_get(f); - if (IS_ERR(map)) - return PTR_ERR(map); - - if (attach) { - prog = bpf_prog_get_type(attr->attach_bpf_fd, type); - if (IS_ERR(prog)) { - fdput(f); - return PTR_ERR(prog); - } - } - - err = sock_map_prog(map, prog, attr->attach_type); - if (err) { - fdput(f); - if (prog) - bpf_prog_put(prog); - return err; - } - - fdput(f); - return 0; -} - #define BPF_F_ATTACH_MASK \ (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI) @@ -1546,7 +1506,6 @@ static int bpf_prog_attach(const union bpf_attr *attr) { enum bpf_prog_type ptype; struct bpf_prog *prog; - struct cgroup *cgrp; int ret; if (!capable(CAP_NET_ADMIN)) @@ -1583,12 +1542,15 @@ static int bpf_prog_attach(const union bpf_attr *attr) ptype = BPF_PROG_TYPE_CGROUP_DEVICE; break; case BPF_SK_MSG_VERDICT: - return sockmap_get_from_fd(attr, BPF_PROG_TYPE_SK_MSG, true); + ptype = BPF_PROG_TYPE_SK_MSG; + break; case BPF_SK_SKB_STREAM_PARSER: case BPF_SK_SKB_STREAM_VERDICT: - return sockmap_get_from_fd(attr, BPF_PROG_TYPE_SK_SKB, true); + ptype = BPF_PROG_TYPE_SK_SKB; + break; case BPF_LIRC_MODE2: - return lirc_prog_attach(attr); + ptype = BPF_PROG_TYPE_LIRC_MODE2; + break; default: return -EINVAL; } @@ -1602,18 +1564,20 @@ static int bpf_prog_attach(const union bpf_attr *attr) return -EINVAL; } - cgrp = cgroup_get_from_fd(attr->target_fd); - if (IS_ERR(cgrp)) { - bpf_prog_put(prog); - return PTR_ERR(cgrp); + switch (ptype) { + case BPF_PROG_TYPE_SK_SKB: + case BPF_PROG_TYPE_SK_MSG: + ret = sockmap_get_from_fd(attr, ptype, prog); + break; + case BPF_PROG_TYPE_LIRC_MODE2: + ret = lirc_prog_attach(attr, prog); + break; + default: + ret = cgroup_bpf_prog_attach(attr, ptype, prog); } - ret = cgroup_bpf_attach(cgrp, prog, attr->attach_type, - attr->attach_flags); if (ret) bpf_prog_put(prog); - cgroup_put(cgrp); - return ret; } @@ -1622,9 +1586,6 @@ static int bpf_prog_attach(const union bpf_attr *attr) static int bpf_prog_detach(const union bpf_attr *attr) { enum bpf_prog_type ptype; - struct bpf_prog *prog; - struct cgroup *cgrp; - int ret; if (!capable(CAP_NET_ADMIN)) return -EPERM; @@ -1657,29 +1618,17 @@ static int bpf_prog_detach(const union bpf_attr *attr) ptype = BPF_PROG_TYPE_CGROUP_DEVICE; break; case BPF_SK_MSG_VERDICT: - return sockmap_get_from_fd(attr, BPF_PROG_TYPE_SK_MSG, false); + return sockmap_get_from_fd(attr, BPF_PROG_TYPE_SK_MSG, NULL); case BPF_SK_SKB_STREAM_PARSER: case BPF_SK_SKB_STREAM_VERDICT: - return sockmap_get_from_fd(attr, BPF_PROG_TYPE_SK_SKB, false); + return sockmap_get_from_fd(attr, BPF_PROG_TYPE_SK_SKB, NULL); case BPF_LIRC_MODE2: return lirc_prog_detach(attr); default: return -EINVAL; } - cgrp = cgroup_get_from_fd(attr->target_fd); - if (IS_ERR(cgrp)) - return PTR_ERR(cgrp); - - prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); - if (IS_ERR(prog)) - prog = NULL; - - ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0); - if (prog) - bpf_prog_put(prog); - cgroup_put(cgrp); - return ret; + return cgroup_bpf_prog_detach(attr, ptype); } #define BPF_PROG_QUERY_LAST_FIELD query.prog_cnt @@ -1687,9 +1636,6 @@ static int bpf_prog_detach(const union bpf_attr *attr) static int bpf_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr) { - struct cgroup *cgrp; - int ret; - if (!capable(CAP_NET_ADMIN)) return -EPERM; if (CHECK_ATTR(BPF_PROG_QUERY)) @@ -1717,14 +1663,9 @@ static int bpf_prog_query(const union bpf_attr *attr, default: return -EINVAL; } - cgrp = cgroup_get_from_fd(attr->query.target_fd); - if (IS_ERR(cgrp)) - return PTR_ERR(cgrp); - ret = cgroup_bpf_query(cgrp, attr, uattr); - cgroup_put(cgrp); - return ret; + + return cgroup_bpf_prog_query(attr, uattr); } -#endif /* CONFIG_CGROUP_BPF */ #define BPF_PROG_TEST_RUN_LAST_FIELD test.duration @@ -2371,7 +2312,6 @@ SYSCALL_DEFINE3(bpf, int, cmd, union bpf_attr __user *, uattr, unsigned int, siz case BPF_OBJ_GET: err = bpf_obj_get(&attr); break; -#ifdef CONFIG_CGROUP_BPF case BPF_PROG_ATTACH: err = bpf_prog_attach(&attr); break; @@ -2381,7 +2321,6 @@ SYSCALL_DEFINE3(bpf, int, cmd, union bpf_attr __user *, uattr, unsigned int, siz case BPF_PROG_QUERY: err = bpf_prog_query(&attr, uattr); break; -#endif case BPF_PROG_TEST_RUN: err = bpf_prog_test_run(&attr, uattr); break; diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 9e2bf834f13a..63aaac52a265 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -5430,6 +5430,10 @@ static int jit_subprogs(struct bpf_verifier_env *env) if (insn->code != (BPF_JMP | BPF_CALL) || insn->src_reg != BPF_PSEUDO_CALL) continue; + /* Upon error here we cannot fall back to interpreter but + * need a hard reject of the program. Thus -EFAULT is + * propagated in any case. + */ subprog = find_subprog(env, i + insn->imm + 1); if (subprog < 0) { WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", @@ -5450,7 +5454,7 @@ static int jit_subprogs(struct bpf_verifier_env *env) func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); if (!func) - return -ENOMEM; + goto out_undo_insn; for (i = 0; i < env->subprog_cnt; i++) { subprog_start = subprog_end; @@ -5515,7 +5519,7 @@ static int jit_subprogs(struct bpf_verifier_env *env) tmp = bpf_int_jit_compile(func[i]); if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); - err = -EFAULT; + err = -ENOTSUPP; goto out_free; } cond_resched(); @@ -5552,6 +5556,7 @@ out_free: if (func[i]) bpf_jit_free(func[i]); kfree(func); +out_undo_insn: /* cleanup main prog to be interpreted */ prog->jit_requested = 0; for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { @@ -5578,6 +5583,8 @@ static int fixup_call_args(struct bpf_verifier_env *env) err = jit_subprogs(env); if (err == 0) return 0; + if (err == -EFAULT) + return err; } #ifndef CONFIG_BPF_JIT_ALWAYS_ON for (i = 0; i < prog->len; i++, insn++) { diff --git a/kernel/dma/Kconfig b/kernel/dma/Kconfig new file mode 100644 index 000000000000..9bd54304446f --- /dev/null +++ b/kernel/dma/Kconfig @@ -0,0 +1,50 @@ + +config HAS_DMA + bool + depends on !NO_DMA + default y + +config NEED_SG_DMA_LENGTH + bool + +config NEED_DMA_MAP_STATE + bool + +config ARCH_DMA_ADDR_T_64BIT + def_bool 64BIT || PHYS_ADDR_T_64BIT + +config HAVE_GENERIC_DMA_COHERENT + bool + +config ARCH_HAS_SYNC_DMA_FOR_DEVICE + bool + +config ARCH_HAS_SYNC_DMA_FOR_CPU + bool + select NEED_DMA_MAP_STATE + +config DMA_DIRECT_OPS + bool + depends on HAS_DMA + +config DMA_NONCOHERENT_OPS + bool + depends on HAS_DMA + select DMA_DIRECT_OPS + +config DMA_NONCOHERENT_MMAP + bool + depends on DMA_NONCOHERENT_OPS + +config DMA_NONCOHERENT_CACHE_SYNC + bool + depends on DMA_NONCOHERENT_OPS + +config DMA_VIRT_OPS + bool + depends on HAS_DMA + +config SWIOTLB + bool + select DMA_DIRECT_OPS + select NEED_DMA_MAP_STATE diff --git a/kernel/dma/Makefile b/kernel/dma/Makefile new file mode 100644 index 000000000000..6de44e4eb454 --- /dev/null +++ b/kernel/dma/Makefile @@ -0,0 +1,11 @@ +# SPDX-License-Identifier: GPL-2.0 + +obj-$(CONFIG_HAS_DMA) += mapping.o +obj-$(CONFIG_DMA_CMA) += contiguous.o +obj-$(CONFIG_HAVE_GENERIC_DMA_COHERENT) += coherent.o +obj-$(CONFIG_DMA_DIRECT_OPS) += direct.o +obj-$(CONFIG_DMA_NONCOHERENT_OPS) += noncoherent.o +obj-$(CONFIG_DMA_VIRT_OPS) += virt.o +obj-$(CONFIG_DMA_API_DEBUG) += debug.o +obj-$(CONFIG_SWIOTLB) += swiotlb.o + diff --git a/kernel/dma/coherent.c b/kernel/dma/coherent.c new file mode 100644 index 000000000000..597d40893862 --- /dev/null +++ b/kernel/dma/coherent.c @@ -0,0 +1,434 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Coherent per-device memory handling. + * Borrowed from i386 + */ +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/dma-mapping.h> + +struct dma_coherent_mem { + void *virt_base; + dma_addr_t device_base; + unsigned long pfn_base; + int size; + int flags; + unsigned long *bitmap; + spinlock_t spinlock; + bool use_dev_dma_pfn_offset; +}; + +static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init; + +static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev) +{ + if (dev && dev->dma_mem) + return dev->dma_mem; + return NULL; +} + +static inline dma_addr_t dma_get_device_base(struct device *dev, + struct dma_coherent_mem * mem) +{ + if (mem->use_dev_dma_pfn_offset) + return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT; + else + return mem->device_base; +} + +static int dma_init_coherent_memory( + phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags, + struct dma_coherent_mem **mem) +{ + struct dma_coherent_mem *dma_mem = NULL; + void __iomem *mem_base = NULL; + int pages = size >> PAGE_SHIFT; + int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); + int ret; + + if (!size) { + ret = -EINVAL; + goto out; + } + + mem_base = memremap(phys_addr, size, MEMREMAP_WC); + if (!mem_base) { + ret = -EINVAL; + goto out; + } + dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); + if (!dma_mem) { + ret = -ENOMEM; + goto out; + } + dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); + if (!dma_mem->bitmap) { + ret = -ENOMEM; + goto out; + } + + dma_mem->virt_base = mem_base; + dma_mem->device_base = device_addr; + dma_mem->pfn_base = PFN_DOWN(phys_addr); + dma_mem->size = pages; + dma_mem->flags = flags; + spin_lock_init(&dma_mem->spinlock); + + *mem = dma_mem; + return 0; + +out: + kfree(dma_mem); + if (mem_base) + memunmap(mem_base); + return ret; +} + +static void dma_release_coherent_memory(struct dma_coherent_mem *mem) +{ + if (!mem) + return; + + memunmap(mem->virt_base); + kfree(mem->bitmap); + kfree(mem); +} + +static int dma_assign_coherent_memory(struct device *dev, + struct dma_coherent_mem *mem) +{ + if (!dev) + return -ENODEV; + + if (dev->dma_mem) + return -EBUSY; + + dev->dma_mem = mem; + return 0; +} + +int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, + dma_addr_t device_addr, size_t size, int flags) +{ + struct dma_coherent_mem *mem; + int ret; + + ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags, &mem); + if (ret) + return ret; + + ret = dma_assign_coherent_memory(dev, mem); + if (ret) + dma_release_coherent_memory(mem); + return ret; +} +EXPORT_SYMBOL(dma_declare_coherent_memory); + +void dma_release_declared_memory(struct device *dev) +{ + struct dma_coherent_mem *mem = dev->dma_mem; + + if (!mem) + return; + dma_release_coherent_memory(mem); + dev->dma_mem = NULL; +} +EXPORT_SYMBOL(dma_release_declared_memory); + +void *dma_mark_declared_memory_occupied(struct device *dev, + dma_addr_t device_addr, size_t size) +{ + struct dma_coherent_mem *mem = dev->dma_mem; + unsigned long flags; + int pos, err; + + size += device_addr & ~PAGE_MASK; + + if (!mem) + return ERR_PTR(-EINVAL); + + spin_lock_irqsave(&mem->spinlock, flags); + pos = PFN_DOWN(device_addr - dma_get_device_base(dev, mem)); + err = bitmap_allocate_region(mem->bitmap, pos, get_order(size)); + spin_unlock_irqrestore(&mem->spinlock, flags); + + if (err != 0) + return ERR_PTR(err); + return mem->virt_base + (pos << PAGE_SHIFT); +} +EXPORT_SYMBOL(dma_mark_declared_memory_occupied); + +static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem, + ssize_t size, dma_addr_t *dma_handle) +{ + int order = get_order(size); + unsigned long flags; + int pageno; + void *ret; + + spin_lock_irqsave(&mem->spinlock, flags); + + if (unlikely(size > (mem->size << PAGE_SHIFT))) + goto err; + + pageno = bitmap_find_free_region(mem->bitmap, mem->size, order); + if (unlikely(pageno < 0)) + goto err; + + /* + * Memory was found in the coherent area. + */ + *dma_handle = mem->device_base + (pageno << PAGE_SHIFT); + ret = mem->virt_base + (pageno << PAGE_SHIFT); + spin_unlock_irqrestore(&mem->spinlock, flags); + memset(ret, 0, size); + return ret; +err: + spin_unlock_irqrestore(&mem->spinlock, flags); + return NULL; +} + +/** + * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool + * @dev: device from which we allocate memory + * @size: size of requested memory area + * @dma_handle: This will be filled with the correct dma handle + * @ret: This pointer will be filled with the virtual address + * to allocated area. + * + * This function should be only called from per-arch dma_alloc_coherent() + * to support allocation from per-device coherent memory pools. + * + * Returns 0 if dma_alloc_coherent should continue with allocating from + * generic memory areas, or !0 if dma_alloc_coherent should return @ret. + */ +int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size, + dma_addr_t *dma_handle, void **ret) +{ + struct dma_coherent_mem *mem = dev_get_coherent_memory(dev); + + if (!mem) + return 0; + + *ret = __dma_alloc_from_coherent(mem, size, dma_handle); + if (*ret) + return 1; + + /* + * In the case where the allocation can not be satisfied from the + * per-device area, try to fall back to generic memory if the + * constraints allow it. + */ + return mem->flags & DMA_MEMORY_EXCLUSIVE; +} +EXPORT_SYMBOL(dma_alloc_from_dev_coherent); + +void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle) +{ + if (!dma_coherent_default_memory) + return NULL; + + return __dma_alloc_from_coherent(dma_coherent_default_memory, size, + dma_handle); +} + +static int __dma_release_from_coherent(struct dma_coherent_mem *mem, + int order, void *vaddr) +{ + if (mem && vaddr >= mem->virt_base && vaddr < + (mem->virt_base + (mem->size << PAGE_SHIFT))) { + int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; + unsigned long flags; + + spin_lock_irqsave(&mem->spinlock, flags); + bitmap_release_region(mem->bitmap, page, order); + spin_unlock_irqrestore(&mem->spinlock, flags); + return 1; + } + return 0; +} + +/** + * dma_release_from_dev_coherent() - free memory to device coherent memory pool + * @dev: device from which the memory was allocated + * @order: the order of pages allocated + * @vaddr: virtual address of allocated pages + * + * This checks whether the memory was allocated from the per-device + * coherent memory pool and if so, releases that memory. + * + * Returns 1 if we correctly released the memory, or 0 if the caller should + * proceed with releasing memory from generic pools. + */ +int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr) +{ + struct dma_coherent_mem *mem = dev_get_coherent_memory(dev); + + return __dma_release_from_coherent(mem, order, vaddr); +} +EXPORT_SYMBOL(dma_release_from_dev_coherent); + +int dma_release_from_global_coherent(int order, void *vaddr) +{ + if (!dma_coherent_default_memory) + return 0; + + return __dma_release_from_coherent(dma_coherent_default_memory, order, + vaddr); +} + +static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem, + struct vm_area_struct *vma, void *vaddr, size_t size, int *ret) +{ + if (mem && vaddr >= mem->virt_base && vaddr + size <= + (mem->virt_base + (mem->size << PAGE_SHIFT))) { + unsigned long off = vma->vm_pgoff; + int start = (vaddr - mem->virt_base) >> PAGE_SHIFT; + int user_count = vma_pages(vma); + int count = PAGE_ALIGN(size) >> PAGE_SHIFT; + + *ret = -ENXIO; + if (off < count && user_count <= count - off) { + unsigned long pfn = mem->pfn_base + start + off; + *ret = remap_pfn_range(vma, vma->vm_start, pfn, + user_count << PAGE_SHIFT, + vma->vm_page_prot); + } + return 1; + } + return 0; +} + +/** + * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool + * @dev: device from which the memory was allocated + * @vma: vm_area for the userspace memory + * @vaddr: cpu address returned by dma_alloc_from_dev_coherent + * @size: size of the memory buffer allocated + * @ret: result from remap_pfn_range() + * + * This checks whether the memory was allocated from the per-device + * coherent memory pool and if so, maps that memory to the provided vma. + * + * Returns 1 if @vaddr belongs to the device coherent pool and the caller + * should return @ret, or 0 if they should proceed with mapping memory from + * generic areas. + */ +int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma, + void *vaddr, size_t size, int *ret) +{ + struct dma_coherent_mem *mem = dev_get_coherent_memory(dev); + + return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret); +} +EXPORT_SYMBOL(dma_mmap_from_dev_coherent); + +int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr, + size_t size, int *ret) +{ + if (!dma_coherent_default_memory) + return 0; + + return __dma_mmap_from_coherent(dma_coherent_default_memory, vma, + vaddr, size, ret); +} + +/* + * Support for reserved memory regions defined in device tree + */ +#ifdef CONFIG_OF_RESERVED_MEM +#include <linux/of.h> +#include <linux/of_fdt.h> +#include <linux/of_reserved_mem.h> + +static struct reserved_mem *dma_reserved_default_memory __initdata; + +static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev) +{ + struct dma_coherent_mem *mem = rmem->priv; + int ret; + + if (!mem) { + ret = dma_init_coherent_memory(rmem->base, rmem->base, + rmem->size, + DMA_MEMORY_EXCLUSIVE, &mem); + if (ret) { + pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n", + &rmem->base, (unsigned long)rmem->size / SZ_1M); + return ret; + } + } + mem->use_dev_dma_pfn_offset = true; + rmem->priv = mem; + dma_assign_coherent_memory(dev, mem); + return 0; +} + +static void rmem_dma_device_release(struct reserved_mem *rmem, + struct device *dev) +{ + if (dev) + dev->dma_mem = NULL; +} + +static const struct reserved_mem_ops rmem_dma_ops = { + .device_init = rmem_dma_device_init, + .device_release = rmem_dma_device_release, +}; + +static int __init rmem_dma_setup(struct reserved_mem *rmem) +{ + unsigned long node = rmem->fdt_node; + + if (of_get_flat_dt_prop(node, "reusable", NULL)) + return -EINVAL; + +#ifdef CONFIG_ARM + if (!of_get_flat_dt_prop(node, "no-map", NULL)) { + pr_err("Reserved memory: regions without no-map are not yet supported\n"); + return -EINVAL; + } + + if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) { + WARN(dma_reserved_default_memory, + "Reserved memory: region for default DMA coherent area is redefined\n"); + dma_reserved_default_memory = rmem; + } +#endif + + rmem->ops = &rmem_dma_ops; + pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n", + &rmem->base, (unsigned long)rmem->size / SZ_1M); + return 0; +} + +static int __init dma_init_reserved_memory(void) +{ + const struct reserved_mem_ops *ops; + int ret; + + if (!dma_reserved_default_memory) + return -ENOMEM; + + ops = dma_reserved_default_memory->ops; + + /* + * We rely on rmem_dma_device_init() does not propagate error of + * dma_assign_coherent_memory() for "NULL" device. + */ + ret = ops->device_init(dma_reserved_default_memory, NULL); + + if (!ret) { + dma_coherent_default_memory = dma_reserved_default_memory->priv; + pr_info("DMA: default coherent area is set\n"); + } + + return ret; +} + +core_initcall(dma_init_reserved_memory); + +RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup); +#endif diff --git a/kernel/dma/contiguous.c b/kernel/dma/contiguous.c new file mode 100644 index 000000000000..d987dcd1bd56 --- /dev/null +++ b/kernel/dma/contiguous.c @@ -0,0 +1,278 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Contiguous Memory Allocator for DMA mapping framework + * Copyright (c) 2010-2011 by Samsung Electronics. + * Written by: + * Marek Szyprowski <m.szyprowski@samsung.com> + * Michal Nazarewicz <mina86@mina86.com> + */ + +#define pr_fmt(fmt) "cma: " fmt + +#ifdef CONFIG_CMA_DEBUG +#ifndef DEBUG +# define DEBUG +#endif +#endif + +#include <asm/page.h> +#include <asm/dma-contiguous.h> + +#include <linux/memblock.h> +#include <linux/err.h> +#include <linux/sizes.h> +#include <linux/dma-contiguous.h> +#include <linux/cma.h> + +#ifdef CONFIG_CMA_SIZE_MBYTES +#define CMA_SIZE_MBYTES CONFIG_CMA_SIZE_MBYTES +#else +#define CMA_SIZE_MBYTES 0 +#endif + +struct cma *dma_contiguous_default_area; + +/* + * Default global CMA area size can be defined in kernel's .config. + * This is useful mainly for distro maintainers to create a kernel + * that works correctly for most supported systems. + * The size can be set in bytes or as a percentage of the total memory + * in the system. + * + * Users, who want to set the size of global CMA area for their system + * should use cma= kernel parameter. + */ +static const phys_addr_t size_bytes = (phys_addr_t)CMA_SIZE_MBYTES * SZ_1M; +static phys_addr_t size_cmdline = -1; +static phys_addr_t base_cmdline; +static phys_addr_t limit_cmdline; + +static int __init early_cma(char *p) +{ + pr_debug("%s(%s)\n", __func__, p); + size_cmdline = memparse(p, &p); + if (*p != '@') + return 0; + base_cmdline = memparse(p + 1, &p); + if (*p != '-') { + limit_cmdline = base_cmdline + size_cmdline; + return 0; + } + limit_cmdline = memparse(p + 1, &p); + + return 0; +} +early_param("cma", early_cma); + +#ifdef CONFIG_CMA_SIZE_PERCENTAGE + +static phys_addr_t __init __maybe_unused cma_early_percent_memory(void) +{ + struct memblock_region *reg; + unsigned long total_pages = 0; + + /* + * We cannot use memblock_phys_mem_size() here, because + * memblock_analyze() has not been called yet. + */ + for_each_memblock(memory, reg) + total_pages += memblock_region_memory_end_pfn(reg) - + memblock_region_memory_base_pfn(reg); + + return (total_pages * CONFIG_CMA_SIZE_PERCENTAGE / 100) << PAGE_SHIFT; +} + +#else + +static inline __maybe_unused phys_addr_t cma_early_percent_memory(void) +{ + return 0; +} + +#endif + +/** + * dma_contiguous_reserve() - reserve area(s) for contiguous memory handling + * @limit: End address of the reserved memory (optional, 0 for any). + * + * This function reserves memory from early allocator. It should be + * called by arch specific code once the early allocator (memblock or bootmem) + * has been activated and all other subsystems have already allocated/reserved + * memory. + */ +void __init dma_contiguous_reserve(phys_addr_t limit) +{ + phys_addr_t selected_size = 0; + phys_addr_t selected_base = 0; + phys_addr_t selected_limit = limit; + bool fixed = false; + + pr_debug("%s(limit %08lx)\n", __func__, (unsigned long)limit); + + if (size_cmdline != -1) { + selected_size = size_cmdline; + selected_base = base_cmdline; + selected_limit = min_not_zero(limit_cmdline, limit); + if (base_cmdline + size_cmdline == limit_cmdline) + fixed = true; + } else { +#ifdef CONFIG_CMA_SIZE_SEL_MBYTES + selected_size = size_bytes; +#elif defined(CONFIG_CMA_SIZE_SEL_PERCENTAGE) + selected_size = cma_early_percent_memory(); +#elif defined(CONFIG_CMA_SIZE_SEL_MIN) + selected_size = min(size_bytes, cma_early_percent_memory()); +#elif defined(CONFIG_CMA_SIZE_SEL_MAX) + selected_size = max(size_bytes, cma_early_percent_memory()); +#endif + } + + if (selected_size && !dma_contiguous_default_area) { + pr_debug("%s: reserving %ld MiB for global area\n", __func__, + (unsigned long)selected_size / SZ_1M); + + dma_contiguous_reserve_area(selected_size, selected_base, + selected_limit, + &dma_contiguous_default_area, + fixed); + } +} + +/** + * dma_contiguous_reserve_area() - reserve custom contiguous area + * @size: Size of the reserved area (in bytes), + * @base: Base address of the reserved area optional, use 0 for any + * @limit: End address of the reserved memory (optional, 0 for any). + * @res_cma: Pointer to store the created cma region. + * @fixed: hint about where to place the reserved area + * + * This function reserves memory from early allocator. It should be + * called by arch specific code once the early allocator (memblock or bootmem) + * has been activated and all other subsystems have already allocated/reserved + * memory. This function allows to create custom reserved areas for specific + * devices. + * + * If @fixed is true, reserve contiguous area at exactly @base. If false, + * reserve in range from @base to @limit. + */ +int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base, + phys_addr_t limit, struct cma **res_cma, + bool fixed) +{ + int ret; + + ret = cma_declare_contiguous(base, size, limit, 0, 0, fixed, + "reserved", res_cma); + if (ret) + return ret; + + /* Architecture specific contiguous memory fixup. */ + dma_contiguous_early_fixup(cma_get_base(*res_cma), + cma_get_size(*res_cma)); + + return 0; +} + +/** + * dma_alloc_from_contiguous() - allocate pages from contiguous area + * @dev: Pointer to device for which the allocation is performed. + * @count: Requested number of pages. + * @align: Requested alignment of pages (in PAGE_SIZE order). + * @gfp_mask: GFP flags to use for this allocation. + * + * This function allocates memory buffer for specified device. It uses + * device specific contiguous memory area if available or the default + * global one. Requires architecture specific dev_get_cma_area() helper + * function. + */ +struct page *dma_alloc_from_contiguous(struct device *dev, size_t count, + unsigned int align, gfp_t gfp_mask) +{ + if (align > CONFIG_CMA_ALIGNMENT) + align = CONFIG_CMA_ALIGNMENT; + + return cma_alloc(dev_get_cma_area(dev), count, align, gfp_mask); +} + +/** + * dma_release_from_contiguous() - release allocated pages + * @dev: Pointer to device for which the pages were allocated. + * @pages: Allocated pages. + * @count: Number of allocated pages. + * + * This function releases memory allocated by dma_alloc_from_contiguous(). + * It returns false when provided pages do not belong to contiguous area and + * true otherwise. + */ +bool dma_release_from_contiguous(struct device *dev, struct page *pages, + int count) +{ + return cma_release(dev_get_cma_area(dev), pages, count); +} + +/* + * Support for reserved memory regions defined in device tree + */ +#ifdef CONFIG_OF_RESERVED_MEM +#include <linux/of.h> +#include <linux/of_fdt.h> +#include <linux/of_reserved_mem.h> + +#undef pr_fmt +#define pr_fmt(fmt) fmt + +static int rmem_cma_device_init(struct reserved_mem *rmem, struct device *dev) +{ + dev_set_cma_area(dev, rmem->priv); + return 0; +} + +static void rmem_cma_device_release(struct reserved_mem *rmem, + struct device *dev) +{ + dev_set_cma_area(dev, NULL); +} + +static const struct reserved_mem_ops rmem_cma_ops = { + .device_init = rmem_cma_device_init, + .device_release = rmem_cma_device_release, +}; + +static int __init rmem_cma_setup(struct reserved_mem *rmem) +{ + phys_addr_t align = PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order); + phys_addr_t mask = align - 1; + unsigned long node = rmem->fdt_node; + struct cma *cma; + int err; + + if (!of_get_flat_dt_prop(node, "reusable", NULL) || + of_get_flat_dt_prop(node, "no-map", NULL)) + return -EINVAL; + + if ((rmem->base & mask) || (rmem->size & mask)) { + pr_err("Reserved memory: incorrect alignment of CMA region\n"); + return -EINVAL; + } + + err = cma_init_reserved_mem(rmem->base, rmem->size, 0, rmem->name, &cma); + if (err) { + pr_err("Reserved memory: unable to setup CMA region\n"); + return err; + } + /* Architecture specific contiguous memory fixup. */ + dma_contiguous_early_fixup(rmem->base, rmem->size); + + if (of_get_flat_dt_prop(node, "linux,cma-default", NULL)) + dma_contiguous_set_default(cma); + + rmem->ops = &rmem_cma_ops; + rmem->priv = cma; + + pr_info("Reserved memory: created CMA memory pool at %pa, size %ld MiB\n", + &rmem->base, (unsigned long)rmem->size / SZ_1M); + + return 0; +} +RESERVEDMEM_OF_DECLARE(cma, "shared-dma-pool", rmem_cma_setup); +#endif diff --git a/kernel/dma/debug.c b/kernel/dma/debug.c new file mode 100644 index 000000000000..c007d25bee09 --- /dev/null +++ b/kernel/dma/debug.c @@ -0,0 +1,1773 @@ +/* + * Copyright (C) 2008 Advanced Micro Devices, Inc. + * + * Author: Joerg Roedel <joerg.roedel@amd.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include <linux/sched/task_stack.h> +#include <linux/scatterlist.h> +#include <linux/dma-mapping.h> +#include <linux/sched/task.h> +#include <linux/stacktrace.h> +#include <linux/dma-debug.h> +#include <linux/spinlock.h> +#include <linux/vmalloc.h> +#include <linux/debugfs.h> +#include <linux/uaccess.h> +#include <linux/export.h> +#include <linux/device.h> +#include <linux/types.h> +#include <linux/sched.h> +#include <linux/ctype.h> +#include <linux/list.h> +#include <linux/slab.h> + +#include <asm/sections.h> + +#define HASH_SIZE 1024ULL +#define HASH_FN_SHIFT 13 +#define HASH_FN_MASK (HASH_SIZE - 1) + +/* allow architectures to override this if absolutely required */ +#ifndef PREALLOC_DMA_DEBUG_ENTRIES +#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) +#endif + +enum { + dma_debug_single, + dma_debug_page, + dma_debug_sg, + dma_debug_coherent, + dma_debug_resource, +}; + +enum map_err_types { + MAP_ERR_CHECK_NOT_APPLICABLE, + MAP_ERR_NOT_CHECKED, + MAP_ERR_CHECKED, +}; + +#define DMA_DEBUG_STACKTRACE_ENTRIES 5 + +/** + * struct dma_debug_entry - track a dma_map* or dma_alloc_coherent mapping + * @list: node on pre-allocated free_entries list + * @dev: 'dev' argument to dma_map_{page|single|sg} or dma_alloc_coherent + * @type: single, page, sg, coherent + * @pfn: page frame of the start address + * @offset: offset of mapping relative to pfn + * @size: length of the mapping + * @direction: enum dma_data_direction + * @sg_call_ents: 'nents' from dma_map_sg + * @sg_mapped_ents: 'mapped_ents' from dma_map_sg + * @map_err_type: track whether dma_mapping_error() was checked + * @stacktrace: support backtraces when a violation is detected + */ +struct dma_debug_entry { + struct list_head list; + struct device *dev; + int type; + unsigned long pfn; + size_t offset; + u64 dev_addr; + u64 size; + int direction; + int sg_call_ents; + int sg_mapped_ents; + enum map_err_types map_err_type; +#ifdef CONFIG_STACKTRACE + struct stack_trace stacktrace; + unsigned long st_entries[DMA_DEBUG_STACKTRACE_ENTRIES]; +#endif +}; + +typedef bool (*match_fn)(struct dma_debug_entry *, struct dma_debug_entry *); + +struct hash_bucket { + struct list_head list; + spinlock_t lock; +} ____cacheline_aligned_in_smp; + +/* Hash list to save the allocated dma addresses */ +static struct hash_bucket dma_entry_hash[HASH_SIZE]; +/* List of pre-allocated dma_debug_entry's */ +static LIST_HEAD(free_entries); +/* Lock for the list above */ +static DEFINE_SPINLOCK(free_entries_lock); + +/* Global disable flag - will be set in case of an error */ +static bool global_disable __read_mostly; + +/* Early initialization disable flag, set at the end of dma_debug_init */ +static bool dma_debug_initialized __read_mostly; + +static inline bool dma_debug_disabled(void) +{ + return global_disable || !dma_debug_initialized; +} + +/* Global error count */ +static u32 error_count; + +/* Global error show enable*/ +static u32 show_all_errors __read_mostly; +/* Number of errors to show */ +static u32 show_num_errors = 1; + +static u32 num_free_entries; +static u32 min_free_entries; +static u32 nr_total_entries; + +/* number of preallocated entries requested by kernel cmdline */ +static u32 nr_prealloc_entries = PREALLOC_DMA_DEBUG_ENTRIES; + +/* debugfs dentry's for the stuff above */ +static struct dentry *dma_debug_dent __read_mostly; +static struct dentry *global_disable_dent __read_mostly; +static struct dentry *error_count_dent __read_mostly; +static struct dentry *show_all_errors_dent __read_mostly; +static struct dentry *show_num_errors_dent __read_mostly; +static struct dentry *num_free_entries_dent __read_mostly; +static struct dentry *min_free_entries_dent __read_mostly; +static struct dentry *filter_dent __read_mostly; + +/* per-driver filter related state */ + +#define NAME_MAX_LEN 64 + +static char current_driver_name[NAME_MAX_LEN] __read_mostly; +static struct device_driver *current_driver __read_mostly; + +static DEFINE_RWLOCK(driver_name_lock); + +static const char *const maperr2str[] = { + [MAP_ERR_CHECK_NOT_APPLICABLE] = "dma map error check not applicable", + [MAP_ERR_NOT_CHECKED] = "dma map error not checked", + [MAP_ERR_CHECKED] = "dma map error checked", +}; + +static const char *type2name[5] = { "single", "page", + "scather-gather", "coherent", + "resource" }; + +static const char *dir2name[4] = { "DMA_BIDIRECTIONAL", "DMA_TO_DEVICE", + "DMA_FROM_DEVICE", "DMA_NONE" }; + +/* + * The access to some variables in this macro is racy. We can't use atomic_t + * here because all these variables are exported to debugfs. Some of them even + * writeable. This is also the reason why a lock won't help much. But anyway, + * the races are no big deal. Here is why: + * + * error_count: the addition is racy, but the worst thing that can happen is + * that we don't count some errors + * show_num_errors: the subtraction is racy. Also no big deal because in + * worst case this will result in one warning more in the + * system log than the user configured. This variable is + * writeable via debugfs. + */ +static inline void dump_entry_trace(struct dma_debug_entry *entry) +{ +#ifdef CONFIG_STACKTRACE + if (entry) { + pr_warning("Mapped at:\n"); + print_stack_trace(&entry->stacktrace, 0); + } +#endif +} + +static bool driver_filter(struct device *dev) +{ + struct device_driver *drv; + unsigned long flags; + bool ret; + + /* driver filter off */ + if (likely(!current_driver_name[0])) + return true; + + /* driver filter on and initialized */ + if (current_driver && dev && dev->driver == current_driver) + return true; + + /* driver filter on, but we can't filter on a NULL device... */ + if (!dev) + return false; + + if (current_driver || !current_driver_name[0]) + return false; + + /* driver filter on but not yet initialized */ + drv = dev->driver; + if (!drv) + return false; + + /* lock to protect against change of current_driver_name */ + read_lock_irqsave(&driver_name_lock, flags); + + ret = false; + if (drv->name && + strncmp(current_driver_name, drv->name, NAME_MAX_LEN - 1) == 0) { + current_driver = drv; + ret = true; + } + + read_unlock_irqrestore(&driver_name_lock, flags); + + return ret; +} + +#define err_printk(dev, entry, format, arg...) do { \ + error_count += 1; \ + if (driver_filter(dev) && \ + (show_all_errors || show_num_errors > 0)) { \ + WARN(1, "%s %s: " format, \ + dev ? dev_driver_string(dev) : "NULL", \ + dev ? dev_name(dev) : "NULL", ## arg); \ + dump_entry_trace(entry); \ + } \ + if (!show_all_errors && show_num_errors > 0) \ + show_num_errors -= 1; \ + } while (0); + +/* + * Hash related functions + * + * Every DMA-API request is saved into a struct dma_debug_entry. To + * have quick access to these structs they are stored into a hash. + */ +static int hash_fn(struct dma_debug_entry *entry) +{ + /* + * Hash function is based on the dma address. + * We use bits 20-27 here as the index into the hash + */ + return (entry->dev_addr >> HASH_FN_SHIFT) & HASH_FN_MASK; +} + +/* + * Request exclusive access to a hash bucket for a given dma_debug_entry. + */ +static struct hash_bucket *get_hash_bucket(struct dma_debug_entry *entry, + unsigned long *flags) + __acquires(&dma_entry_hash[idx].lock) +{ + int idx = hash_fn(entry); + unsigned long __flags; + + spin_lock_irqsave(&dma_entry_hash[idx].lock, __flags); + *flags = __flags; + return &dma_entry_hash[idx]; +} + +/* + * Give up exclusive access to the hash bucket + */ +static void put_hash_bucket(struct hash_bucket *bucket, + unsigned long *flags) + __releases(&bucket->lock) +{ + unsigned long __flags = *flags; + + spin_unlock_irqrestore(&bucket->lock, __flags); +} + +static bool exact_match(struct dma_debug_entry *a, struct dma_debug_entry *b) +{ + return ((a->dev_addr == b->dev_addr) && + (a->dev == b->dev)) ? true : false; +} + +static bool containing_match(struct dma_debug_entry *a, + struct dma_debug_entry *b) +{ + if (a->dev != b->dev) + return false; + + if ((b->dev_addr <= a->dev_addr) && + ((b->dev_addr + b->size) >= (a->dev_addr + a->size))) + return true; + + return false; +} + +/* + * Search a given entry in the hash bucket list + */ +static struct dma_debug_entry *__hash_bucket_find(struct hash_bucket *bucket, + struct dma_debug_entry *ref, + match_fn match) +{ + struct dma_debug_entry *entry, *ret = NULL; + int matches = 0, match_lvl, last_lvl = -1; + + list_for_each_entry(entry, &bucket->list, list) { + if (!match(ref, entry)) + continue; + + /* + * Some drivers map the same physical address multiple + * times. Without a hardware IOMMU this results in the + * same device addresses being put into the dma-debug + * hash multiple times too. This can result in false + * positives being reported. Therefore we implement a + * best-fit algorithm here which returns the entry from + * the hash which fits best to the reference value + * instead of the first-fit. + */ + matches += 1; + match_lvl = 0; + entry->size == ref->size ? ++match_lvl : 0; + entry->type == ref->type ? ++match_lvl : 0; + entry->direction == ref->direction ? ++match_lvl : 0; + entry->sg_call_ents == ref->sg_call_ents ? ++match_lvl : 0; + + if (match_lvl == 4) { + /* perfect-fit - return the result */ + return entry; + } else if (match_lvl > last_lvl) { + /* + * We found an entry that fits better then the + * previous one or it is the 1st match. + */ + last_lvl = match_lvl; + ret = entry; + } + } + + /* + * If we have multiple matches but no perfect-fit, just return + * NULL. + */ + ret = (matches == 1) ? ret : NULL; + + return ret; +} + +static struct dma_debug_entry *bucket_find_exact(struct hash_bucket *bucket, + struct dma_debug_entry *ref) +{ + return __hash_bucket_find(bucket, ref, exact_match); +} + +static struct dma_debug_entry *bucket_find_contain(struct hash_bucket **bucket, + struct dma_debug_entry *ref, + unsigned long *flags) +{ + + unsigned int max_range = dma_get_max_seg_size(ref->dev); + struct dma_debug_entry *entry, index = *ref; + unsigned int range = 0; + + while (range <= max_range) { + entry = __hash_bucket_find(*bucket, ref, containing_match); + + if (entry) + return entry; + + /* + * Nothing found, go back a hash bucket + */ + put_hash_bucket(*bucket, flags); + range += (1 << HASH_FN_SHIFT); + index.dev_addr -= (1 << HASH_FN_SHIFT); + *bucket = get_hash_bucket(&index, flags); + } + + return NULL; +} + +/* + * Add an entry to a hash bucket + */ +static void hash_bucket_add(struct hash_bucket *bucket, + struct dma_debug_entry *entry) +{ + list_add_tail(&entry->list, &bucket->list); +} + +/* + * Remove entry from a hash bucket list + */ +static void hash_bucket_del(struct dma_debug_entry *entry) +{ + list_del(&entry->list); +} + +static unsigned long long phys_addr(struct dma_debug_entry *entry) +{ + if (entry->type == dma_debug_resource) + return __pfn_to_phys(entry->pfn) + entry->offset; + + return page_to_phys(pfn_to_page(entry->pfn)) + entry->offset; +} + +/* + * Dump mapping entries for debugging purposes + */ +void debug_dma_dump_mappings(struct device *dev) +{ + int idx; + + for (idx = 0; idx < HASH_SIZE; idx++) { + struct hash_bucket *bucket = &dma_entry_hash[idx]; + struct dma_debug_entry *entry; + unsigned long flags; + + spin_lock_irqsave(&bucket->lock, flags); + + list_for_each_entry(entry, &bucket->list, list) { + if (!dev || dev == entry->dev) { + dev_info(entry->dev, + "%s idx %d P=%Lx N=%lx D=%Lx L=%Lx %s %s\n", + type2name[entry->type], idx, + phys_addr(entry), entry->pfn, + entry->dev_addr, entry->size, + dir2name[entry->direction], + maperr2str[entry->map_err_type]); + } + } + + spin_unlock_irqrestore(&bucket->lock, flags); + } +} + +/* + * For each mapping (initial cacheline in the case of + * dma_alloc_coherent/dma_map_page, initial cacheline in each page of a + * scatterlist, or the cacheline specified in dma_map_single) insert + * into this tree using the cacheline as the key. At + * dma_unmap_{single|sg|page} or dma_free_coherent delete the entry. If + * the entry already exists at insertion time add a tag as a reference + * count for the overlapping mappings. For now, the overlap tracking + * just ensures that 'unmaps' balance 'maps' before marking the + * cacheline idle, but we should also be flagging overlaps as an API + * violation. + * + * Memory usage is mostly constrained by the maximum number of available + * dma-debug entries in that we need a free dma_debug_entry before + * inserting into the tree. In the case of dma_map_page and + * dma_alloc_coherent there is only one dma_debug_entry and one + * dma_active_cacheline entry to track per event. dma_map_sg(), on the + * other hand, consumes a single dma_debug_entry, but inserts 'nents' + * entries into the tree. + * + * At any time debug_dma_assert_idle() can be called to trigger a + * warning if any cachelines in the given page are in the active set. + */ +static RADIX_TREE(dma_active_cacheline, GFP_NOWAIT); +static DEFINE_SPINLOCK(radix_lock); +#define ACTIVE_CACHELINE_MAX_OVERLAP ((1 << RADIX_TREE_MAX_TAGS) - 1) +#define CACHELINE_PER_PAGE_SHIFT (PAGE_SHIFT - L1_CACHE_SHIFT) +#define CACHELINES_PER_PAGE (1 << CACHELINE_PER_PAGE_SHIFT) + +static phys_addr_t to_cacheline_number(struct dma_debug_entry *entry) +{ + return (entry->pfn << CACHELINE_PER_PAGE_SHIFT) + + (entry->offset >> L1_CACHE_SHIFT); +} + +static int active_cacheline_read_overlap(phys_addr_t cln) +{ + int overlap = 0, i; + + for (i = RADIX_TREE_MAX_TAGS - 1; i >= 0; i--) + if (radix_tree_tag_get(&dma_active_cacheline, cln, i)) + overlap |= 1 << i; + return overlap; +} + +static int active_cacheline_set_overlap(phys_addr_t cln, int overlap) +{ + int i; + + if (overlap > ACTIVE_CACHELINE_MAX_OVERLAP || overlap < 0) + return overlap; + + for (i = RADIX_TREE_MAX_TAGS - 1; i >= 0; i--) + if (overlap & 1 << i) + radix_tree_tag_set(&dma_active_cacheline, cln, i); + else + radix_tree_tag_clear(&dma_active_cacheline, cln, i); + + return overlap; +} + +static void active_cacheline_inc_overlap(phys_addr_t cln) +{ + int overlap = active_cacheline_read_overlap(cln); + + overlap = active_cacheline_set_overlap(cln, ++overlap); + + /* If we overflowed the overlap counter then we're potentially + * leaking dma-mappings. Otherwise, if maps and unmaps are + * balanced then this overflow may cause false negatives in + * debug_dma_assert_idle() as the cacheline may be marked idle + * prematurely. + */ + WARN_ONCE(overlap > ACTIVE_CACHELINE_MAX_OVERLAP, + "DMA-API: exceeded %d overlapping mappings of cacheline %pa\n", + ACTIVE_CACHELINE_MAX_OVERLAP, &cln); +} + +static int active_cacheline_dec_overlap(phys_addr_t cln) +{ + int overlap = active_cacheline_read_overlap(cln); + + return active_cacheline_set_overlap(cln, --overlap); +} + +static int active_cacheline_insert(struct dma_debug_entry *entry) +{ + phys_addr_t cln = to_cacheline_number(entry); + unsigned long flags; + int rc; + + /* If the device is not writing memory then we don't have any + * concerns about the cpu consuming stale data. This mitigates + * legitimate usages of overlapping mappings. + */ + if (entry->direction == DMA_TO_DEVICE) + return 0; + + spin_lock_irqsave(&radix_lock, flags); + rc = radix_tree_insert(&dma_active_cacheline, cln, entry); + if (rc == -EEXIST) + active_cacheline_inc_overlap(cln); + spin_unlock_irqrestore(&radix_lock, flags); + + return rc; +} + +static void active_cacheline_remove(struct dma_debug_entry *entry) +{ + phys_addr_t cln = to_cacheline_number(entry); + unsigned long flags; + + /* ...mirror the insert case */ + if (entry->direction == DMA_TO_DEVICE) + return; + + spin_lock_irqsave(&radix_lock, flags); + /* since we are counting overlaps the final put of the + * cacheline will occur when the overlap count is 0. + * active_cacheline_dec_overlap() returns -1 in that case + */ + if (active_cacheline_dec_overlap(cln) < 0) + radix_tree_delete(&dma_active_cacheline, cln); + spin_unlock_irqrestore(&radix_lock, flags); +} + +/** + * debug_dma_assert_idle() - assert that a page is not undergoing dma + * @page: page to lookup in the dma_active_cacheline tree + * + * Place a call to this routine in cases where the cpu touching the page + * before the dma completes (page is dma_unmapped) will lead to data + * corruption. + */ +void debug_dma_assert_idle(struct page *page) +{ + static struct dma_debug_entry *ents[CACHELINES_PER_PAGE]; + struct dma_debug_entry *entry = NULL; + void **results = (void **) &ents; + unsigned int nents, i; + unsigned long flags; + phys_addr_t cln; + + if (dma_debug_disabled()) + return; + + if (!page) + return; + + cln = (phys_addr_t) page_to_pfn(page) << CACHELINE_PER_PAGE_SHIFT; + spin_lock_irqsave(&radix_lock, flags); + nents = radix_tree_gang_lookup(&dma_active_cacheline, results, cln, + CACHELINES_PER_PAGE); + for (i = 0; i < nents; i++) { + phys_addr_t ent_cln = to_cacheline_number(ents[i]); + + if (ent_cln == cln) { + entry = ents[i]; + break; + } else if (ent_cln >= cln + CACHELINES_PER_PAGE) + break; + } + spin_unlock_irqrestore(&radix_lock, flags); + + if (!entry) + return; + + cln = to_cacheline_number(entry); + err_printk(entry->dev, entry, + "DMA-API: cpu touching an active dma mapped cacheline [cln=%pa]\n", + &cln); +} + +/* + * Wrapper function for adding an entry to the hash. + * This function takes care of locking itself. + */ +static void add_dma_entry(struct dma_debug_entry *entry) +{ + struct hash_bucket *bucket; + unsigned long flags; + int rc; + + bucket = get_hash_bucket(entry, &flags); + hash_bucket_add(bucket, entry); + put_hash_bucket(bucket, &flags); + + rc = active_cacheline_insert(entry); + if (rc == -ENOMEM) { + pr_err("DMA-API: cacheline tracking ENOMEM, dma-debug disabled\n"); + global_disable = true; + } + + /* TODO: report -EEXIST errors here as overlapping mappings are + * not supported by the DMA API + */ +} + +static struct dma_debug_entry *__dma_entry_alloc(void) +{ + struct dma_debug_entry *entry; + + entry = list_entry(free_entries.next, struct dma_debug_entry, list); + list_del(&entry->list); + memset(entry, 0, sizeof(*entry)); + + num_free_entries -= 1; + if (num_free_entries < min_free_entries) + min_free_entries = num_free_entries; + + return entry; +} + +/* struct dma_entry allocator + * + * The next two functions implement the allocator for + * struct dma_debug_entries. + */ +static struct dma_debug_entry *dma_entry_alloc(void) +{ + struct dma_debug_entry *entry; + unsigned long flags; + + spin_lock_irqsave(&free_entries_lock, flags); + + if (list_empty(&free_entries)) { + global_disable = true; + spin_unlock_irqrestore(&free_entries_lock, flags); + pr_err("DMA-API: debugging out of memory - disabling\n"); + return NULL; + } + + entry = __dma_entry_alloc(); + + spin_unlock_irqrestore(&free_entries_lock, flags); + +#ifdef CONFIG_STACKTRACE + entry->stacktrace.max_entries = DMA_DEBUG_STACKTRACE_ENTRIES; + entry->stacktrace.entries = entry->st_entries; + entry->stacktrace.skip = 2; + save_stack_trace(&entry->stacktrace); +#endif + + return entry; +} + +static void dma_entry_free(struct dma_debug_entry *entry) +{ + unsigned long flags; + + active_cacheline_remove(entry); + + /* + * add to beginning of the list - this way the entries are + * more likely cache hot when they are reallocated. + */ + spin_lock_irqsave(&free_entries_lock, flags); + list_add(&entry->list, &free_entries); + num_free_entries += 1; + spin_unlock_irqrestore(&free_entries_lock, flags); +} + +int dma_debug_resize_entries(u32 num_entries) +{ + int i, delta, ret = 0; + unsigned long flags; + struct dma_debug_entry *entry; + LIST_HEAD(tmp); + + spin_lock_irqsave(&free_entries_lock, flags); + + if (nr_total_entries < num_entries) { + delta = num_entries - nr_total_entries; + + spin_unlock_irqrestore(&free_entries_lock, flags); + + for (i = 0; i < delta; i++) { + entry = kzalloc(sizeof(*entry), GFP_KERNEL); + if (!entry) + break; + + list_add_tail(&entry->list, &tmp); + } + + spin_lock_irqsave(&free_entries_lock, flags); + + list_splice(&tmp, &free_entries); + nr_total_entries += i; + num_free_entries += i; + } else { + delta = nr_total_entries - num_entries; + + for (i = 0; i < delta && !list_empty(&free_entries); i++) { + entry = __dma_entry_alloc(); + kfree(entry); + } + + nr_total_entries -= i; + } + + if (nr_total_entries != num_entries) + ret = 1; + + spin_unlock_irqrestore(&free_entries_lock, flags); + + return ret; +} + +/* + * DMA-API debugging init code + * + * The init code does two things: + * 1. Initialize core data structures + * 2. Preallocate a given number of dma_debug_entry structs + */ + +static int prealloc_memory(u32 num_entries) +{ + struct dma_debug_entry *entry, *next_entry; + int i; + + for (i = 0; i < num_entries; ++i) { + entry = kzalloc(sizeof(*entry), GFP_KERNEL); + if (!entry) + goto out_err; + + list_add_tail(&entry->list, &free_entries); + } + + num_free_entries = num_entries; + min_free_entries = num_entries; + + pr_info("DMA-API: preallocated %d debug entries\n", num_entries); + + return 0; + +out_err: + + list_for_each_entry_safe(entry, next_entry, &free_entries, list) { + list_del(&entry->list); + kfree(entry); + } + + return -ENOMEM; +} + +static ssize_t filter_read(struct file *file, char __user *user_buf, + size_t count, loff_t *ppos) +{ + char buf[NAME_MAX_LEN + 1]; + unsigned long flags; + int len; + + if (!current_driver_name[0]) + return 0; + + /* + * We can't copy to userspace directly because current_driver_name can + * only be read under the driver_name_lock with irqs disabled. So + * create a temporary copy first. + */ + read_lock_irqsave(&driver_name_lock, flags); + len = scnprintf(buf, NAME_MAX_LEN + 1, "%s\n", current_driver_name); + read_unlock_irqrestore(&driver_name_lock, flags); + + return simple_read_from_buffer(user_buf, count, ppos, buf, len); +} + +static ssize_t filter_write(struct file *file, const char __user *userbuf, + size_t count, loff_t *ppos) +{ + char buf[NAME_MAX_LEN]; + unsigned long flags; + size_t len; + int i; + + /* + * We can't copy from userspace directly. Access to + * current_driver_name is protected with a write_lock with irqs + * disabled. Since copy_from_user can fault and may sleep we + * need to copy to temporary buffer first + */ + len = min(count, (size_t)(NAME_MAX_LEN - 1)); + if (copy_from_user(buf, userbuf, len)) + return -EFAULT; + + buf[len] = 0; + + write_lock_irqsave(&driver_name_lock, flags); + + /* + * Now handle the string we got from userspace very carefully. + * The rules are: + * - only use the first token we got + * - token delimiter is everything looking like a space + * character (' ', '\n', '\t' ...) + * + */ + if (!isalnum(buf[0])) { + /* + * If the first character userspace gave us is not + * alphanumerical then assume the filter should be + * switched off. + */ + if (current_driver_name[0]) + pr_info("DMA-API: switching off dma-debug driver filter\n"); + current_driver_name[0] = 0; + current_driver = NULL; + goto out_unlock; + } + + /* + * Now parse out the first token and use it as the name for the + * driver to filter for. + */ + for (i = 0; i < NAME_MAX_LEN - 1; ++i) { + current_driver_name[i] = buf[i]; + if (isspace(buf[i]) || buf[i] == ' ' || buf[i] == 0) + break; + } + current_driver_name[i] = 0; + current_driver = NULL; + + pr_info("DMA-API: enable driver filter for driver [%s]\n", + current_driver_name); + +out_unlock: + write_unlock_irqrestore(&driver_name_lock, flags); + + return count; +} + +static const struct file_operations filter_fops = { + .read = filter_read, + .write = filter_write, + .llseek = default_llseek, +}; + +static int dma_debug_fs_init(void) +{ + dma_debug_dent = debugfs_create_dir("dma-api", NULL); + if (!dma_debug_dent) { + pr_err("DMA-API: can not create debugfs directory\n"); + return -ENOMEM; + } + + global_disable_dent = debugfs_create_bool("disabled", 0444, + dma_debug_dent, + &global_disable); + if (!global_disable_dent) + goto out_err; + + error_count_dent = debugfs_create_u32("error_count", 0444, + dma_debug_dent, &error_count); + if (!error_count_dent) + goto out_err; + + show_all_errors_dent = debugfs_create_u32("all_errors", 0644, + dma_debug_dent, + &show_all_errors); + if (!show_all_errors_dent) + goto out_err; + + show_num_errors_dent = debugfs_create_u32("num_errors", 0644, + dma_debug_dent, + &show_num_errors); + if (!show_num_errors_dent) + goto out_err; + + num_free_entries_dent = debugfs_create_u32("num_free_entries", 0444, + dma_debug_dent, + &num_free_entries); + if (!num_free_entries_dent) + goto out_err; + + min_free_entries_dent = debugfs_create_u32("min_free_entries", 0444, + dma_debug_dent, + &min_free_entries); + if (!min_free_entries_dent) + goto out_err; + + filter_dent = debugfs_create_file("driver_filter", 0644, + dma_debug_dent, NULL, &filter_fops); + if (!filter_dent) + goto out_err; + + return 0; + +out_err: + debugfs_remove_recursive(dma_debug_dent); + + return -ENOMEM; +} + +static int device_dma_allocations(struct device *dev, struct dma_debug_entry **out_entry) +{ + struct dma_debug_entry *entry; + unsigned long flags; + int count = 0, i; + + for (i = 0; i < HASH_SIZE; ++i) { + spin_lock_irqsave(&dma_entry_hash[i].lock, flags); + list_for_each_entry(entry, &dma_entry_hash[i].list, list) { + if (entry->dev == dev) { + count += 1; + *out_entry = entry; + } + } + spin_unlock_irqrestore(&dma_entry_hash[i].lock, flags); + } + + return count; +} + +static int dma_debug_device_change(struct notifier_block *nb, unsigned long action, void *data) +{ + struct device *dev = data; + struct dma_debug_entry *uninitialized_var(entry); + int count; + + if (dma_debug_disabled()) + return 0; + + switch (action) { + case BUS_NOTIFY_UNBOUND_DRIVER: + count = device_dma_allocations(dev, &entry); + if (count == 0) + break; + err_printk(dev, entry, "DMA-API: device driver has pending " + "DMA allocations while released from device " + "[count=%d]\n" + "One of leaked entries details: " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped with %s] [mapped as %s]\n", + count, entry->dev_addr, entry->size, + dir2name[entry->direction], type2name[entry->type]); + break; + default: + break; + } + + return 0; +} + +void dma_debug_add_bus(struct bus_type *bus) +{ + struct notifier_block *nb; + + if (dma_debug_disabled()) + return; + + nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); + if (nb == NULL) { + pr_err("dma_debug_add_bus: out of memory\n"); + return; + } + + nb->notifier_call = dma_debug_device_change; + + bus_register_notifier(bus, nb); +} + +static int dma_debug_init(void) +{ + int i; + + /* Do not use dma_debug_initialized here, since we really want to be + * called to set dma_debug_initialized + */ + if (global_disable) + return 0; + + for (i = 0; i < HASH_SIZE; ++i) { + INIT_LIST_HEAD(&dma_entry_hash[i].list); + spin_lock_init(&dma_entry_hash[i].lock); + } + + if (dma_debug_fs_init() != 0) { + pr_err("DMA-API: error creating debugfs entries - disabling\n"); + global_disable = true; + + return 0; + } + + if (prealloc_memory(nr_prealloc_entries) != 0) { + pr_err("DMA-API: debugging out of memory error - disabled\n"); + global_disable = true; + + return 0; + } + + nr_total_entries = num_free_entries; + + dma_debug_initialized = true; + + pr_info("DMA-API: debugging enabled by kernel config\n"); + return 0; +} +core_initcall(dma_debug_init); + +static __init int dma_debug_cmdline(char *str) +{ + if (!str) + return -EINVAL; + + if (strncmp(str, "off", 3) == 0) { + pr_info("DMA-API: debugging disabled on kernel command line\n"); + global_disable = true; + } + + return 0; +} + +static __init int dma_debug_entries_cmdline(char *str) +{ + if (!str) + return -EINVAL; + if (!get_option(&str, &nr_prealloc_entries)) + nr_prealloc_entries = PREALLOC_DMA_DEBUG_ENTRIES; + return 0; +} + +__setup("dma_debug=", dma_debug_cmdline); +__setup("dma_debug_entries=", dma_debug_entries_cmdline); + +static void check_unmap(struct dma_debug_entry *ref) +{ + struct dma_debug_entry *entry; + struct hash_bucket *bucket; + unsigned long flags; + + bucket = get_hash_bucket(ref, &flags); + entry = bucket_find_exact(bucket, ref); + + if (!entry) { + /* must drop lock before calling dma_mapping_error */ + put_hash_bucket(bucket, &flags); + + if (dma_mapping_error(ref->dev, ref->dev_addr)) { + err_printk(ref->dev, NULL, + "DMA-API: device driver tries to free an " + "invalid DMA memory address\n"); + } else { + err_printk(ref->dev, NULL, + "DMA-API: device driver tries to free DMA " + "memory it has not allocated [device " + "address=0x%016llx] [size=%llu bytes]\n", + ref->dev_addr, ref->size); + } + return; + } + + if (ref->size != entry->size) { + err_printk(ref->dev, entry, "DMA-API: device driver frees " + "DMA memory with different size " + "[device address=0x%016llx] [map size=%llu bytes] " + "[unmap size=%llu bytes]\n", + ref->dev_addr, entry->size, ref->size); + } + + if (ref->type != entry->type) { + err_printk(ref->dev, entry, "DMA-API: device driver frees " + "DMA memory with wrong function " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped as %s] [unmapped as %s]\n", + ref->dev_addr, ref->size, + type2name[entry->type], type2name[ref->type]); + } else if ((entry->type == dma_debug_coherent) && + (phys_addr(ref) != phys_addr(entry))) { + err_printk(ref->dev, entry, "DMA-API: device driver frees " + "DMA memory with different CPU address " + "[device address=0x%016llx] [size=%llu bytes] " + "[cpu alloc address=0x%016llx] " + "[cpu free address=0x%016llx]", + ref->dev_addr, ref->size, + phys_addr(entry), + phys_addr(ref)); + } + + if (ref->sg_call_ents && ref->type == dma_debug_sg && + ref->sg_call_ents != entry->sg_call_ents) { + err_printk(ref->dev, entry, "DMA-API: device driver frees " + "DMA sg list with different entry count " + "[map count=%d] [unmap count=%d]\n", + entry->sg_call_ents, ref->sg_call_ents); + } + + /* + * This may be no bug in reality - but most implementations of the + * DMA API don't handle this properly, so check for it here + */ + if (ref->direction != entry->direction) { + err_printk(ref->dev, entry, "DMA-API: device driver frees " + "DMA memory with different direction " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped with %s] [unmapped with %s]\n", + ref->dev_addr, ref->size, + dir2name[entry->direction], + dir2name[ref->direction]); + } + + /* + * Drivers should use dma_mapping_error() to check the returned + * addresses of dma_map_single() and dma_map_page(). + * If not, print this warning message. See Documentation/DMA-API.txt. + */ + if (entry->map_err_type == MAP_ERR_NOT_CHECKED) { + err_printk(ref->dev, entry, + "DMA-API: device driver failed to check map error" + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped as %s]", + ref->dev_addr, ref->size, + type2name[entry->type]); + } + + hash_bucket_del(entry); + dma_entry_free(entry); + + put_hash_bucket(bucket, &flags); +} + +static void check_for_stack(struct device *dev, + struct page *page, size_t offset) +{ + void *addr; + struct vm_struct *stack_vm_area = task_stack_vm_area(current); + + if (!stack_vm_area) { + /* Stack is direct-mapped. */ + if (PageHighMem(page)) + return; + addr = page_address(page) + offset; + if (object_is_on_stack(addr)) + err_printk(dev, NULL, "DMA-API: device driver maps memory from stack [addr=%p]\n", addr); + } else { + /* Stack is vmalloced. */ + int i; + + for (i = 0; i < stack_vm_area->nr_pages; i++) { + if (page != stack_vm_area->pages[i]) + continue; + + addr = (u8 *)current->stack + i * PAGE_SIZE + offset; + err_printk(dev, NULL, "DMA-API: device driver maps memory from stack [probable addr=%p]\n", addr); + break; + } + } +} + +static inline bool overlap(void *addr, unsigned long len, void *start, void *end) +{ + unsigned long a1 = (unsigned long)addr; + unsigned long b1 = a1 + len; + unsigned long a2 = (unsigned long)start; + unsigned long b2 = (unsigned long)end; + + return !(b1 <= a2 || a1 >= b2); +} + +static void check_for_illegal_area(struct device *dev, void *addr, unsigned long len) +{ + if (overlap(addr, len, _stext, _etext) || + overlap(addr, len, __start_rodata, __end_rodata)) + err_printk(dev, NULL, "DMA-API: device driver maps memory from kernel text or rodata [addr=%p] [len=%lu]\n", addr, len); +} + +static void check_sync(struct device *dev, + struct dma_debug_entry *ref, + bool to_cpu) +{ + struct dma_debug_entry *entry; + struct hash_bucket *bucket; + unsigned long flags; + + bucket = get_hash_bucket(ref, &flags); + + entry = bucket_find_contain(&bucket, ref, &flags); + + if (!entry) { + err_printk(dev, NULL, "DMA-API: device driver tries " + "to sync DMA memory it has not allocated " + "[device address=0x%016llx] [size=%llu bytes]\n", + (unsigned long long)ref->dev_addr, ref->size); + goto out; + } + + if (ref->size > entry->size) { + err_printk(dev, entry, "DMA-API: device driver syncs" + " DMA memory outside allocated range " + "[device address=0x%016llx] " + "[allocation size=%llu bytes] " + "[sync offset+size=%llu]\n", + entry->dev_addr, entry->size, + ref->size); + } + + if (entry->direction == DMA_BIDIRECTIONAL) + goto out; + + if (ref->direction != entry->direction) { + err_printk(dev, entry, "DMA-API: device driver syncs " + "DMA memory with different direction " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped with %s] [synced with %s]\n", + (unsigned long long)ref->dev_addr, entry->size, + dir2name[entry->direction], + dir2name[ref->direction]); + } + + if (to_cpu && !(entry->direction == DMA_FROM_DEVICE) && + !(ref->direction == DMA_TO_DEVICE)) + err_printk(dev, entry, "DMA-API: device driver syncs " + "device read-only DMA memory for cpu " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped with %s] [synced with %s]\n", + (unsigned long long)ref->dev_addr, entry->size, + dir2name[entry->direction], + dir2name[ref->direction]); + + if (!to_cpu && !(entry->direction == DMA_TO_DEVICE) && + !(ref->direction == DMA_FROM_DEVICE)) + err_printk(dev, entry, "DMA-API: device driver syncs " + "device write-only DMA memory to device " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped with %s] [synced with %s]\n", + (unsigned long long)ref->dev_addr, entry->size, + dir2name[entry->direction], + dir2name[ref->direction]); + + if (ref->sg_call_ents && ref->type == dma_debug_sg && + ref->sg_call_ents != entry->sg_call_ents) { + err_printk(ref->dev, entry, "DMA-API: device driver syncs " + "DMA sg list with different entry count " + "[map count=%d] [sync count=%d]\n", + entry->sg_call_ents, ref->sg_call_ents); + } + +out: + put_hash_bucket(bucket, &flags); +} + +static void check_sg_segment(struct device *dev, struct scatterlist *sg) +{ +#ifdef CONFIG_DMA_API_DEBUG_SG + unsigned int max_seg = dma_get_max_seg_size(dev); + u64 start, end, boundary = dma_get_seg_boundary(dev); + + /* + * Either the driver forgot to set dma_parms appropriately, or + * whoever generated the list forgot to check them. + */ + if (sg->length > max_seg) + err_printk(dev, NULL, "DMA-API: mapping sg segment longer than device claims to support [len=%u] [max=%u]\n", + sg->length, max_seg); + /* + * In some cases this could potentially be the DMA API + * implementation's fault, but it would usually imply that + * the scatterlist was built inappropriately to begin with. + */ + start = sg_dma_address(sg); + end = start + sg_dma_len(sg) - 1; + if ((start ^ end) & ~boundary) + err_printk(dev, NULL, "DMA-API: mapping sg segment across boundary [start=0x%016llx] [end=0x%016llx] [boundary=0x%016llx]\n", + start, end, boundary); +#endif +} + +void debug_dma_map_page(struct device *dev, struct page *page, size_t offset, + size_t size, int direction, dma_addr_t dma_addr, + bool map_single) +{ + struct dma_debug_entry *entry; + + if (unlikely(dma_debug_disabled())) + return; + + if (dma_mapping_error(dev, dma_addr)) + return; + + entry = dma_entry_alloc(); + if (!entry) + return; + + entry->dev = dev; + entry->type = dma_debug_page; + entry->pfn = page_to_pfn(page); + entry->offset = offset, + entry->dev_addr = dma_addr; + entry->size = size; + entry->direction = direction; + entry->map_err_type = MAP_ERR_NOT_CHECKED; + + if (map_single) + entry->type = dma_debug_single; + + check_for_stack(dev, page, offset); + + if (!PageHighMem(page)) { + void *addr = page_address(page) + offset; + + check_for_illegal_area(dev, addr, size); + } + + add_dma_entry(entry); +} +EXPORT_SYMBOL(debug_dma_map_page); + +void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) +{ + struct dma_debug_entry ref; + struct dma_debug_entry *entry; + struct hash_bucket *bucket; + unsigned long flags; + + if (unlikely(dma_debug_disabled())) + return; + + ref.dev = dev; + ref.dev_addr = dma_addr; + bucket = get_hash_bucket(&ref, &flags); + + list_for_each_entry(entry, &bucket->list, list) { + if (!exact_match(&ref, entry)) + continue; + + /* + * The same physical address can be mapped multiple + * times. Without a hardware IOMMU this results in the + * same device addresses being put into the dma-debug + * hash multiple times too. This can result in false + * positives being reported. Therefore we implement a + * best-fit algorithm here which updates the first entry + * from the hash which fits the reference value and is + * not currently listed as being checked. + */ + if (entry->map_err_type == MAP_ERR_NOT_CHECKED) { + entry->map_err_type = MAP_ERR_CHECKED; + break; + } + } + + put_hash_bucket(bucket, &flags); +} +EXPORT_SYMBOL(debug_dma_mapping_error); + +void debug_dma_unmap_page(struct device *dev, dma_addr_t addr, + size_t size, int direction, bool map_single) +{ + struct dma_debug_entry ref = { + .type = dma_debug_page, + .dev = dev, + .dev_addr = addr, + .size = size, + .direction = direction, + }; + + if (unlikely(dma_debug_disabled())) + return; + + if (map_single) + ref.type = dma_debug_single; + + check_unmap(&ref); +} +EXPORT_SYMBOL(debug_dma_unmap_page); + +void debug_dma_map_sg(struct device *dev, struct scatterlist *sg, + int nents, int mapped_ents, int direction) +{ + struct dma_debug_entry *entry; + struct scatterlist *s; + int i; + + if (unlikely(dma_debug_disabled())) + return; + + for_each_sg(sg, s, mapped_ents, i) { + entry = dma_entry_alloc(); + if (!entry) + return; + + entry->type = dma_debug_sg; + entry->dev = dev; + entry->pfn = page_to_pfn(sg_page(s)); + entry->offset = s->offset, + entry->size = sg_dma_len(s); + entry->dev_addr = sg_dma_address(s); + entry->direction = direction; + entry->sg_call_ents = nents; + entry->sg_mapped_ents = mapped_ents; + + check_for_stack(dev, sg_page(s), s->offset); + + if (!PageHighMem(sg_page(s))) { + check_for_illegal_area(dev, sg_virt(s), sg_dma_len(s)); + } + + check_sg_segment(dev, s); + + add_dma_entry(entry); + } +} +EXPORT_SYMBOL(debug_dma_map_sg); + +static int get_nr_mapped_entries(struct device *dev, + struct dma_debug_entry *ref) +{ + struct dma_debug_entry *entry; + struct hash_bucket *bucket; + unsigned long flags; + int mapped_ents; + + bucket = get_hash_bucket(ref, &flags); + entry = bucket_find_exact(bucket, ref); + mapped_ents = 0; + + if (entry) + mapped_ents = entry->sg_mapped_ents; + put_hash_bucket(bucket, &flags); + + return mapped_ents; +} + +void debug_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, + int nelems, int dir) +{ + struct scatterlist *s; + int mapped_ents = 0, i; + + if (unlikely(dma_debug_disabled())) + return; + + for_each_sg(sglist, s, nelems, i) { + + struct dma_debug_entry ref = { + .type = dma_debug_sg, + .dev = dev, + .pfn = page_to_pfn(sg_page(s)), + .offset = s->offset, + .dev_addr = sg_dma_address(s), + .size = sg_dma_len(s), + .direction = dir, + .sg_call_ents = nelems, + }; + + if (mapped_ents && i >= mapped_ents) + break; + + if (!i) + mapped_ents = get_nr_mapped_entries(dev, &ref); + + check_unmap(&ref); + } +} +EXPORT_SYMBOL(debug_dma_unmap_sg); + +void debug_dma_alloc_coherent(struct device *dev, size_t size, + dma_addr_t dma_addr, void *virt) +{ + struct dma_debug_entry *entry; + + if (unlikely(dma_debug_disabled())) + return; + + if (unlikely(virt == NULL)) + return; + + /* handle vmalloc and linear addresses */ + if (!is_vmalloc_addr(virt) && !virt_addr_valid(virt)) + return; + + entry = dma_entry_alloc(); + if (!entry) + return; + + entry->type = dma_debug_coherent; + entry->dev = dev; + entry->offset = offset_in_page(virt); + entry->size = size; + entry->dev_addr = dma_addr; + entry->direction = DMA_BIDIRECTIONAL; + + if (is_vmalloc_addr(virt)) + entry->pfn = vmalloc_to_pfn(virt); + else + entry->pfn = page_to_pfn(virt_to_page(virt)); + + add_dma_entry(entry); +} +EXPORT_SYMBOL(debug_dma_alloc_coherent); + +void debug_dma_free_coherent(struct device *dev, size_t size, + void *virt, dma_addr_t addr) +{ + struct dma_debug_entry ref = { + .type = dma_debug_coherent, + .dev = dev, + .offset = offset_in_page(virt), + .dev_addr = addr, + .size = size, + .direction = DMA_BIDIRECTIONAL, + }; + + /* handle vmalloc and linear addresses */ + if (!is_vmalloc_addr(virt) && !virt_addr_valid(virt)) + return; + + if (is_vmalloc_addr(virt)) + ref.pfn = vmalloc_to_pfn(virt); + else + ref.pfn = page_to_pfn(virt_to_page(virt)); + + if (unlikely(dma_debug_disabled())) + return; + + check_unmap(&ref); +} +EXPORT_SYMBOL(debug_dma_free_coherent); + +void debug_dma_map_resource(struct device *dev, phys_addr_t addr, size_t size, + int direction, dma_addr_t dma_addr) +{ + struct dma_debug_entry *entry; + + if (unlikely(dma_debug_disabled())) + return; + + entry = dma_entry_alloc(); + if (!entry) + return; + + entry->type = dma_debug_resource; + entry->dev = dev; + entry->pfn = PHYS_PFN(addr); + entry->offset = offset_in_page(addr); + entry->size = size; + entry->dev_addr = dma_addr; + entry->direction = direction; + entry->map_err_type = MAP_ERR_NOT_CHECKED; + + add_dma_entry(entry); +} +EXPORT_SYMBOL(debug_dma_map_resource); + +void debug_dma_unmap_resource(struct device *dev, dma_addr_t dma_addr, + size_t size, int direction) +{ + struct dma_debug_entry ref = { + .type = dma_debug_resource, + .dev = dev, + .dev_addr = dma_addr, + .size = size, + .direction = direction, + }; + + if (unlikely(dma_debug_disabled())) + return; + + check_unmap(&ref); +} +EXPORT_SYMBOL(debug_dma_unmap_resource); + +void debug_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, + size_t size, int direction) +{ + struct dma_debug_entry ref; + + if (unlikely(dma_debug_disabled())) + return; + + ref.type = dma_debug_single; + ref.dev = dev; + ref.dev_addr = dma_handle; + ref.size = size; + ref.direction = direction; + ref.sg_call_ents = 0; + + check_sync(dev, &ref, true); +} +EXPORT_SYMBOL(debug_dma_sync_single_for_cpu); + +void debug_dma_sync_single_for_device(struct device *dev, + dma_addr_t dma_handle, size_t size, + int direction) +{ + struct dma_debug_entry ref; + + if (unlikely(dma_debug_disabled())) + return; + + ref.type = dma_debug_single; + ref.dev = dev; + ref.dev_addr = dma_handle; + ref.size = size; + ref.direction = direction; + ref.sg_call_ents = 0; + + check_sync(dev, &ref, false); +} +EXPORT_SYMBOL(debug_dma_sync_single_for_device); + +void debug_dma_sync_single_range_for_cpu(struct device *dev, + dma_addr_t dma_handle, + unsigned long offset, size_t size, + int direction) +{ + struct dma_debug_entry ref; + + if (unlikely(dma_debug_disabled())) + return; + + ref.type = dma_debug_single; + ref.dev = dev; + ref.dev_addr = dma_handle; + ref.size = offset + size; + ref.direction = direction; + ref.sg_call_ents = 0; + + check_sync(dev, &ref, true); +} +EXPORT_SYMBOL(debug_dma_sync_single_range_for_cpu); + +void debug_dma_sync_single_range_for_device(struct device *dev, + dma_addr_t dma_handle, + unsigned long offset, + size_t size, int direction) +{ + struct dma_debug_entry ref; + + if (unlikely(dma_debug_disabled())) + return; + + ref.type = dma_debug_single; + ref.dev = dev; + ref.dev_addr = dma_handle; + ref.size = offset + size; + ref.direction = direction; + ref.sg_call_ents = 0; + + check_sync(dev, &ref, false); +} +EXPORT_SYMBOL(debug_dma_sync_single_range_for_device); + +void debug_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, + int nelems, int direction) +{ + struct scatterlist *s; + int mapped_ents = 0, i; + + if (unlikely(dma_debug_disabled())) + return; + + for_each_sg(sg, s, nelems, i) { + + struct dma_debug_entry ref = { + .type = dma_debug_sg, + .dev = dev, + .pfn = page_to_pfn(sg_page(s)), + .offset = s->offset, + .dev_addr = sg_dma_address(s), + .size = sg_dma_len(s), + .direction = direction, + .sg_call_ents = nelems, + }; + + if (!i) + mapped_ents = get_nr_mapped_entries(dev, &ref); + + if (i >= mapped_ents) + break; + + check_sync(dev, &ref, true); + } +} +EXPORT_SYMBOL(debug_dma_sync_sg_for_cpu); + +void debug_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, + int nelems, int direction) +{ + struct scatterlist *s; + int mapped_ents = 0, i; + + if (unlikely(dma_debug_disabled())) + return; + + for_each_sg(sg, s, nelems, i) { + + struct dma_debug_entry ref = { + .type = dma_debug_sg, + .dev = dev, + .pfn = page_to_pfn(sg_page(s)), + .offset = s->offset, + .dev_addr = sg_dma_address(s), + .size = sg_dma_len(s), + .direction = direction, + .sg_call_ents = nelems, + }; + if (!i) + mapped_ents = get_nr_mapped_entries(dev, &ref); + + if (i >= mapped_ents) + break; + + check_sync(dev, &ref, false); + } +} +EXPORT_SYMBOL(debug_dma_sync_sg_for_device); + +static int __init dma_debug_driver_setup(char *str) +{ + int i; + + for (i = 0; i < NAME_MAX_LEN - 1; ++i, ++str) { + current_driver_name[i] = *str; + if (*str == 0) + break; + } + + if (current_driver_name[0]) + pr_info("DMA-API: enable driver filter for driver [%s]\n", + current_driver_name); + + + return 1; +} +__setup("dma_debug_driver=", dma_debug_driver_setup); diff --git a/kernel/dma/direct.c b/kernel/dma/direct.c new file mode 100644 index 000000000000..8be8106270c2 --- /dev/null +++ b/kernel/dma/direct.c @@ -0,0 +1,204 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * DMA operations that map physical memory directly without using an IOMMU or + * flushing caches. + */ +#include <linux/export.h> +#include <linux/mm.h> +#include <linux/dma-direct.h> +#include <linux/scatterlist.h> +#include <linux/dma-contiguous.h> +#include <linux/pfn.h> +#include <linux/set_memory.h> + +#define DIRECT_MAPPING_ERROR 0 + +/* + * Most architectures use ZONE_DMA for the first 16 Megabytes, but + * some use it for entirely different regions: + */ +#ifndef ARCH_ZONE_DMA_BITS +#define ARCH_ZONE_DMA_BITS 24 +#endif + +/* + * For AMD SEV all DMA must be to unencrypted addresses. + */ +static inline bool force_dma_unencrypted(void) +{ + return sev_active(); +} + +static bool +check_addr(struct device *dev, dma_addr_t dma_addr, size_t size, + const char *caller) +{ + if (unlikely(dev && !dma_capable(dev, dma_addr, size))) { + if (!dev->dma_mask) { + dev_err(dev, + "%s: call on device without dma_mask\n", + caller); + return false; + } + + if (*dev->dma_mask >= DMA_BIT_MASK(32)) { + dev_err(dev, + "%s: overflow %pad+%zu of device mask %llx\n", + caller, &dma_addr, size, *dev->dma_mask); + } + return false; + } + return true; +} + +static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) +{ + dma_addr_t addr = force_dma_unencrypted() ? + __phys_to_dma(dev, phys) : phys_to_dma(dev, phys); + return addr + size - 1 <= dev->coherent_dma_mask; +} + +void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, + gfp_t gfp, unsigned long attrs) +{ + unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; + int page_order = get_order(size); + struct page *page = NULL; + void *ret; + + /* we always manually zero the memory once we are done: */ + gfp &= ~__GFP_ZERO; + + /* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */ + if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) + gfp |= GFP_DMA; + if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) + gfp |= GFP_DMA32; + +again: + /* CMA can be used only in the context which permits sleeping */ + if (gfpflags_allow_blocking(gfp)) { + page = dma_alloc_from_contiguous(dev, count, page_order, gfp); + if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { + dma_release_from_contiguous(dev, page, count); + page = NULL; + } + } + if (!page) + page = alloc_pages_node(dev_to_node(dev), gfp, page_order); + + if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { + __free_pages(page, page_order); + page = NULL; + + if (IS_ENABLED(CONFIG_ZONE_DMA32) && + dev->coherent_dma_mask < DMA_BIT_MASK(64) && + !(gfp & (GFP_DMA32 | GFP_DMA))) { + gfp |= GFP_DMA32; + goto again; + } + + if (IS_ENABLED(CONFIG_ZONE_DMA) && + dev->coherent_dma_mask < DMA_BIT_MASK(32) && + !(gfp & GFP_DMA)) { + gfp = (gfp & ~GFP_DMA32) | GFP_DMA; + goto again; + } + } + + if (!page) + return NULL; + ret = page_address(page); + if (force_dma_unencrypted()) { + set_memory_decrypted((unsigned long)ret, 1 << page_order); + *dma_handle = __phys_to_dma(dev, page_to_phys(page)); + } else { + *dma_handle = phys_to_dma(dev, page_to_phys(page)); + } + memset(ret, 0, size); + return ret; +} + +/* + * NOTE: this function must never look at the dma_addr argument, because we want + * to be able to use it as a helper for iommu implementations as well. + */ +void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, + dma_addr_t dma_addr, unsigned long attrs) +{ + unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; + unsigned int page_order = get_order(size); + + if (force_dma_unencrypted()) + set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); + if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count)) + free_pages((unsigned long)cpu_addr, page_order); +} + +dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset; + + if (!check_addr(dev, dma_addr, size, __func__)) + return DIRECT_MAPPING_ERROR; + return dma_addr; +} + +int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, + enum dma_data_direction dir, unsigned long attrs) +{ + int i; + struct scatterlist *sg; + + for_each_sg(sgl, sg, nents, i) { + BUG_ON(!sg_page(sg)); + + sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg)); + if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__)) + return 0; + sg_dma_len(sg) = sg->length; + } + + return nents; +} + +int dma_direct_supported(struct device *dev, u64 mask) +{ +#ifdef CONFIG_ZONE_DMA + if (mask < DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) + return 0; +#else + /* + * Because 32-bit DMA masks are so common we expect every architecture + * to be able to satisfy them - either by not supporting more physical + * memory, or by providing a ZONE_DMA32. If neither is the case, the + * architecture needs to use an IOMMU instead of the direct mapping. + */ + if (mask < DMA_BIT_MASK(32)) + return 0; +#endif + /* + * Various PCI/PCIe bridges have broken support for > 32bit DMA even + * if the device itself might support it. + */ + if (dev->dma_32bit_limit && mask > DMA_BIT_MASK(32)) + return 0; + return 1; +} + +int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr) +{ + return dma_addr == DIRECT_MAPPING_ERROR; +} + +const struct dma_map_ops dma_direct_ops = { + .alloc = dma_direct_alloc, + .free = dma_direct_free, + .map_page = dma_direct_map_page, + .map_sg = dma_direct_map_sg, + .dma_supported = dma_direct_supported, + .mapping_error = dma_direct_mapping_error, +}; +EXPORT_SYMBOL(dma_direct_ops); diff --git a/kernel/dma/mapping.c b/kernel/dma/mapping.c new file mode 100644 index 000000000000..d2a92ddaac4d --- /dev/null +++ b/kernel/dma/mapping.c @@ -0,0 +1,345 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * arch-independent dma-mapping routines + * + * Copyright (c) 2006 SUSE Linux Products GmbH + * Copyright (c) 2006 Tejun Heo <teheo@suse.de> + */ + +#include <linux/acpi.h> +#include <linux/dma-mapping.h> +#include <linux/export.h> +#include <linux/gfp.h> +#include <linux/of_device.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> + +/* + * Managed DMA API + */ +struct dma_devres { + size_t size; + void *vaddr; + dma_addr_t dma_handle; + unsigned long attrs; +}; + +static void dmam_release(struct device *dev, void *res) +{ + struct dma_devres *this = res; + + dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, + this->attrs); +} + +static int dmam_match(struct device *dev, void *res, void *match_data) +{ + struct dma_devres *this = res, *match = match_data; + + if (this->vaddr == match->vaddr) { + WARN_ON(this->size != match->size || + this->dma_handle != match->dma_handle); + return 1; + } + return 0; +} + +/** + * dmam_alloc_coherent - Managed dma_alloc_coherent() + * @dev: Device to allocate coherent memory for + * @size: Size of allocation + * @dma_handle: Out argument for allocated DMA handle + * @gfp: Allocation flags + * + * Managed dma_alloc_coherent(). Memory allocated using this function + * will be automatically released on driver detach. + * + * RETURNS: + * Pointer to allocated memory on success, NULL on failure. + */ +void *dmam_alloc_coherent(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp) +{ + struct dma_devres *dr; + void *vaddr; + + dr = devres_alloc(dmam_release, sizeof(*dr), gfp); + if (!dr) + return NULL; + + vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp); + if (!vaddr) { + devres_free(dr); + return NULL; + } + + dr->vaddr = vaddr; + dr->dma_handle = *dma_handle; + dr->size = size; + + devres_add(dev, dr); + + return vaddr; +} +EXPORT_SYMBOL(dmam_alloc_coherent); + +/** + * dmam_free_coherent - Managed dma_free_coherent() + * @dev: Device to free coherent memory for + * @size: Size of allocation + * @vaddr: Virtual address of the memory to free + * @dma_handle: DMA handle of the memory to free + * + * Managed dma_free_coherent(). + */ +void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, + dma_addr_t dma_handle) +{ + struct dma_devres match_data = { size, vaddr, dma_handle }; + + dma_free_coherent(dev, size, vaddr, dma_handle); + WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); +} +EXPORT_SYMBOL(dmam_free_coherent); + +/** + * dmam_alloc_attrs - Managed dma_alloc_attrs() + * @dev: Device to allocate non_coherent memory for + * @size: Size of allocation + * @dma_handle: Out argument for allocated DMA handle + * @gfp: Allocation flags + * @attrs: Flags in the DMA_ATTR_* namespace. + * + * Managed dma_alloc_attrs(). Memory allocated using this function will be + * automatically released on driver detach. + * + * RETURNS: + * Pointer to allocated memory on success, NULL on failure. + */ +void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, + gfp_t gfp, unsigned long attrs) +{ + struct dma_devres *dr; + void *vaddr; + + dr = devres_alloc(dmam_release, sizeof(*dr), gfp); + if (!dr) + return NULL; + + vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); + if (!vaddr) { + devres_free(dr); + return NULL; + } + + dr->vaddr = vaddr; + dr->dma_handle = *dma_handle; + dr->size = size; + dr->attrs = attrs; + + devres_add(dev, dr); + + return vaddr; +} +EXPORT_SYMBOL(dmam_alloc_attrs); + +#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT + +static void dmam_coherent_decl_release(struct device *dev, void *res) +{ + dma_release_declared_memory(dev); +} + +/** + * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory() + * @dev: Device to declare coherent memory for + * @phys_addr: Physical address of coherent memory to be declared + * @device_addr: Device address of coherent memory to be declared + * @size: Size of coherent memory to be declared + * @flags: Flags + * + * Managed dma_declare_coherent_memory(). + * + * RETURNS: + * 0 on success, -errno on failure. + */ +int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, + dma_addr_t device_addr, size_t size, int flags) +{ + void *res; + int rc; + + res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL); + if (!res) + return -ENOMEM; + + rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size, + flags); + if (!rc) + devres_add(dev, res); + else + devres_free(res); + + return rc; +} +EXPORT_SYMBOL(dmam_declare_coherent_memory); + +/** + * dmam_release_declared_memory - Managed dma_release_declared_memory(). + * @dev: Device to release declared coherent memory for + * + * Managed dmam_release_declared_memory(). + */ +void dmam_release_declared_memory(struct device *dev) +{ + WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL)); +} +EXPORT_SYMBOL(dmam_release_declared_memory); + +#endif + +/* + * Create scatter-list for the already allocated DMA buffer. + */ +int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, + void *cpu_addr, dma_addr_t handle, size_t size) +{ + struct page *page = virt_to_page(cpu_addr); + int ret; + + ret = sg_alloc_table(sgt, 1, GFP_KERNEL); + if (unlikely(ret)) + return ret; + + sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); + return 0; +} +EXPORT_SYMBOL(dma_common_get_sgtable); + +/* + * Create userspace mapping for the DMA-coherent memory. + */ +int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, + void *cpu_addr, dma_addr_t dma_addr, size_t size) +{ + int ret = -ENXIO; +#ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP + unsigned long user_count = vma_pages(vma); + unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; + unsigned long off = vma->vm_pgoff; + + vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); + + if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) + return ret; + + if (off < count && user_count <= (count - off)) + ret = remap_pfn_range(vma, vma->vm_start, + page_to_pfn(virt_to_page(cpu_addr)) + off, + user_count << PAGE_SHIFT, + vma->vm_page_prot); +#endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */ + + return ret; +} +EXPORT_SYMBOL(dma_common_mmap); + +#ifdef CONFIG_MMU +static struct vm_struct *__dma_common_pages_remap(struct page **pages, + size_t size, unsigned long vm_flags, pgprot_t prot, + const void *caller) +{ + struct vm_struct *area; + + area = get_vm_area_caller(size, vm_flags, caller); + if (!area) + return NULL; + + if (map_vm_area(area, prot, pages)) { + vunmap(area->addr); + return NULL; + } + + return area; +} + +/* + * remaps an array of PAGE_SIZE pages into another vm_area + * Cannot be used in non-sleeping contexts + */ +void *dma_common_pages_remap(struct page **pages, size_t size, + unsigned long vm_flags, pgprot_t prot, + const void *caller) +{ + struct vm_struct *area; + + area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller); + if (!area) + return NULL; + + area->pages = pages; + + return area->addr; +} + +/* + * remaps an allocated contiguous region into another vm_area. + * Cannot be used in non-sleeping contexts + */ + +void *dma_common_contiguous_remap(struct page *page, size_t size, + unsigned long vm_flags, + pgprot_t prot, const void *caller) +{ + int i; + struct page **pages; + struct vm_struct *area; + + pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL); + if (!pages) + return NULL; + + for (i = 0; i < (size >> PAGE_SHIFT); i++) + pages[i] = nth_page(page, i); + + area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller); + + kfree(pages); + + if (!area) + return NULL; + return area->addr; +} + +/* + * unmaps a range previously mapped by dma_common_*_remap + */ +void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags) +{ + struct vm_struct *area = find_vm_area(cpu_addr); + + if (!area || (area->flags & vm_flags) != vm_flags) { + WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); + return; + } + + unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size)); + vunmap(cpu_addr); +} +#endif + +/* + * enables DMA API use for a device + */ +int dma_configure(struct device *dev) +{ + if (dev->bus->dma_configure) + return dev->bus->dma_configure(dev); + return 0; +} + +void dma_deconfigure(struct device *dev) +{ + of_dma_deconfigure(dev); + acpi_dma_deconfigure(dev); +} diff --git a/kernel/dma/noncoherent.c b/kernel/dma/noncoherent.c new file mode 100644 index 000000000000..79e9a757387f --- /dev/null +++ b/kernel/dma/noncoherent.c @@ -0,0 +1,102 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2018 Christoph Hellwig. + * + * DMA operations that map physical memory directly without providing cache + * coherence. + */ +#include <linux/export.h> +#include <linux/mm.h> +#include <linux/dma-direct.h> +#include <linux/dma-noncoherent.h> +#include <linux/scatterlist.h> + +static void dma_noncoherent_sync_single_for_device(struct device *dev, + dma_addr_t addr, size_t size, enum dma_data_direction dir) +{ + arch_sync_dma_for_device(dev, dma_to_phys(dev, addr), size, dir); +} + +static void dma_noncoherent_sync_sg_for_device(struct device *dev, + struct scatterlist *sgl, int nents, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sgl, sg, nents, i) + arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir); +} + +static dma_addr_t dma_noncoherent_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + dma_addr_t addr; + + addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); + if (!dma_mapping_error(dev, addr) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + arch_sync_dma_for_device(dev, page_to_phys(page) + offset, + size, dir); + return addr; +} + +static int dma_noncoherent_map_sg(struct device *dev, struct scatterlist *sgl, + int nents, enum dma_data_direction dir, unsigned long attrs) +{ + nents = dma_direct_map_sg(dev, sgl, nents, dir, attrs); + if (nents > 0 && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + dma_noncoherent_sync_sg_for_device(dev, sgl, nents, dir); + return nents; +} + +#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU +static void dma_noncoherent_sync_single_for_cpu(struct device *dev, + dma_addr_t addr, size_t size, enum dma_data_direction dir) +{ + arch_sync_dma_for_cpu(dev, dma_to_phys(dev, addr), size, dir); +} + +static void dma_noncoherent_sync_sg_for_cpu(struct device *dev, + struct scatterlist *sgl, int nents, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sgl, sg, nents, i) + arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir); +} + +static void dma_noncoherent_unmap_page(struct device *dev, dma_addr_t addr, + size_t size, enum dma_data_direction dir, unsigned long attrs) +{ + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + dma_noncoherent_sync_single_for_cpu(dev, addr, size, dir); +} + +static void dma_noncoherent_unmap_sg(struct device *dev, struct scatterlist *sgl, + int nents, enum dma_data_direction dir, unsigned long attrs) +{ + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + dma_noncoherent_sync_sg_for_cpu(dev, sgl, nents, dir); +} +#endif + +const struct dma_map_ops dma_noncoherent_ops = { + .alloc = arch_dma_alloc, + .free = arch_dma_free, + .mmap = arch_dma_mmap, + .sync_single_for_device = dma_noncoherent_sync_single_for_device, + .sync_sg_for_device = dma_noncoherent_sync_sg_for_device, + .map_page = dma_noncoherent_map_page, + .map_sg = dma_noncoherent_map_sg, +#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU + .sync_single_for_cpu = dma_noncoherent_sync_single_for_cpu, + .sync_sg_for_cpu = dma_noncoherent_sync_sg_for_cpu, + .unmap_page = dma_noncoherent_unmap_page, + .unmap_sg = dma_noncoherent_unmap_sg, +#endif + .dma_supported = dma_direct_supported, + .mapping_error = dma_direct_mapping_error, + .cache_sync = arch_dma_cache_sync, +}; +EXPORT_SYMBOL(dma_noncoherent_ops); diff --git a/kernel/dma/swiotlb.c b/kernel/dma/swiotlb.c new file mode 100644 index 000000000000..904541055792 --- /dev/null +++ b/kernel/dma/swiotlb.c @@ -0,0 +1,1088 @@ +/* + * Dynamic DMA mapping support. + * + * This implementation is a fallback for platforms that do not support + * I/O TLBs (aka DMA address translation hardware). + * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> + * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> + * Copyright (C) 2000, 2003 Hewlett-Packard Co + * David Mosberger-Tang <davidm@hpl.hp.com> + * + * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. + * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid + * unnecessary i-cache flushing. + * 04/07/.. ak Better overflow handling. Assorted fixes. + * 05/09/10 linville Add support for syncing ranges, support syncing for + * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. + * 08/12/11 beckyb Add highmem support + */ + +#include <linux/cache.h> +#include <linux/dma-direct.h> +#include <linux/mm.h> +#include <linux/export.h> +#include <linux/spinlock.h> +#include <linux/string.h> +#include <linux/swiotlb.h> +#include <linux/pfn.h> +#include <linux/types.h> +#include <linux/ctype.h> +#include <linux/highmem.h> +#include <linux/gfp.h> +#include <linux/scatterlist.h> +#include <linux/mem_encrypt.h> +#include <linux/set_memory.h> + +#include <asm/io.h> +#include <asm/dma.h> + +#include <linux/init.h> +#include <linux/bootmem.h> +#include <linux/iommu-helper.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/swiotlb.h> + +#define OFFSET(val,align) ((unsigned long) \ + ( (val) & ( (align) - 1))) + +#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) + +/* + * Minimum IO TLB size to bother booting with. Systems with mainly + * 64bit capable cards will only lightly use the swiotlb. If we can't + * allocate a contiguous 1MB, we're probably in trouble anyway. + */ +#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) + +enum swiotlb_force swiotlb_force; + +/* + * Used to do a quick range check in swiotlb_tbl_unmap_single and + * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this + * API. + */ +static phys_addr_t io_tlb_start, io_tlb_end; + +/* + * The number of IO TLB blocks (in groups of 64) between io_tlb_start and + * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. + */ +static unsigned long io_tlb_nslabs; + +/* + * When the IOMMU overflows we return a fallback buffer. This sets the size. + */ +static unsigned long io_tlb_overflow = 32*1024; + +static phys_addr_t io_tlb_overflow_buffer; + +/* + * This is a free list describing the number of free entries available from + * each index + */ +static unsigned int *io_tlb_list; +static unsigned int io_tlb_index; + +/* + * Max segment that we can provide which (if pages are contingous) will + * not be bounced (unless SWIOTLB_FORCE is set). + */ +unsigned int max_segment; + +/* + * We need to save away the original address corresponding to a mapped entry + * for the sync operations. + */ +#define INVALID_PHYS_ADDR (~(phys_addr_t)0) +static phys_addr_t *io_tlb_orig_addr; + +/* + * Protect the above data structures in the map and unmap calls + */ +static DEFINE_SPINLOCK(io_tlb_lock); + +static int late_alloc; + +static int __init +setup_io_tlb_npages(char *str) +{ + if (isdigit(*str)) { + io_tlb_nslabs = simple_strtoul(str, &str, 0); + /* avoid tail segment of size < IO_TLB_SEGSIZE */ + io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); + } + if (*str == ',') + ++str; + if (!strcmp(str, "force")) { + swiotlb_force = SWIOTLB_FORCE; + } else if (!strcmp(str, "noforce")) { + swiotlb_force = SWIOTLB_NO_FORCE; + io_tlb_nslabs = 1; + } + + return 0; +} +early_param("swiotlb", setup_io_tlb_npages); +/* make io_tlb_overflow tunable too? */ + +unsigned long swiotlb_nr_tbl(void) +{ + return io_tlb_nslabs; +} +EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); + +unsigned int swiotlb_max_segment(void) +{ + return max_segment; +} +EXPORT_SYMBOL_GPL(swiotlb_max_segment); + +void swiotlb_set_max_segment(unsigned int val) +{ + if (swiotlb_force == SWIOTLB_FORCE) + max_segment = 1; + else + max_segment = rounddown(val, PAGE_SIZE); +} + +/* default to 64MB */ +#define IO_TLB_DEFAULT_SIZE (64UL<<20) +unsigned long swiotlb_size_or_default(void) +{ + unsigned long size; + + size = io_tlb_nslabs << IO_TLB_SHIFT; + + return size ? size : (IO_TLB_DEFAULT_SIZE); +} + +static bool no_iotlb_memory; + +void swiotlb_print_info(void) +{ + unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; + unsigned char *vstart, *vend; + + if (no_iotlb_memory) { + pr_warn("software IO TLB: No low mem\n"); + return; + } + + vstart = phys_to_virt(io_tlb_start); + vend = phys_to_virt(io_tlb_end); + + printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n", + (unsigned long long)io_tlb_start, + (unsigned long long)io_tlb_end, + bytes >> 20, vstart, vend - 1); +} + +/* + * Early SWIOTLB allocation may be too early to allow an architecture to + * perform the desired operations. This function allows the architecture to + * call SWIOTLB when the operations are possible. It needs to be called + * before the SWIOTLB memory is used. + */ +void __init swiotlb_update_mem_attributes(void) +{ + void *vaddr; + unsigned long bytes; + + if (no_iotlb_memory || late_alloc) + return; + + vaddr = phys_to_virt(io_tlb_start); + bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); + set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); + memset(vaddr, 0, bytes); + + vaddr = phys_to_virt(io_tlb_overflow_buffer); + bytes = PAGE_ALIGN(io_tlb_overflow); + set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); + memset(vaddr, 0, bytes); +} + +int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) +{ + void *v_overflow_buffer; + unsigned long i, bytes; + + bytes = nslabs << IO_TLB_SHIFT; + + io_tlb_nslabs = nslabs; + io_tlb_start = __pa(tlb); + io_tlb_end = io_tlb_start + bytes; + + /* + * Get the overflow emergency buffer + */ + v_overflow_buffer = memblock_virt_alloc_low_nopanic( + PAGE_ALIGN(io_tlb_overflow), + PAGE_SIZE); + if (!v_overflow_buffer) + return -ENOMEM; + + io_tlb_overflow_buffer = __pa(v_overflow_buffer); + + /* + * Allocate and initialize the free list array. This array is used + * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE + * between io_tlb_start and io_tlb_end. + */ + io_tlb_list = memblock_virt_alloc( + PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), + PAGE_SIZE); + io_tlb_orig_addr = memblock_virt_alloc( + PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), + PAGE_SIZE); + for (i = 0; i < io_tlb_nslabs; i++) { + io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); + io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; + } + io_tlb_index = 0; + + if (verbose) + swiotlb_print_info(); + + swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); + return 0; +} + +/* + * Statically reserve bounce buffer space and initialize bounce buffer data + * structures for the software IO TLB used to implement the DMA API. + */ +void __init +swiotlb_init(int verbose) +{ + size_t default_size = IO_TLB_DEFAULT_SIZE; + unsigned char *vstart; + unsigned long bytes; + + if (!io_tlb_nslabs) { + io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); + io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); + } + + bytes = io_tlb_nslabs << IO_TLB_SHIFT; + + /* Get IO TLB memory from the low pages */ + vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); + if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) + return; + + if (io_tlb_start) + memblock_free_early(io_tlb_start, + PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); + pr_warn("Cannot allocate SWIOTLB buffer"); + no_iotlb_memory = true; +} + +/* + * Systems with larger DMA zones (those that don't support ISA) can + * initialize the swiotlb later using the slab allocator if needed. + * This should be just like above, but with some error catching. + */ +int +swiotlb_late_init_with_default_size(size_t default_size) +{ + unsigned long bytes, req_nslabs = io_tlb_nslabs; + unsigned char *vstart = NULL; + unsigned int order; + int rc = 0; + + if (!io_tlb_nslabs) { + io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); + io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); + } + + /* + * Get IO TLB memory from the low pages + */ + order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); + io_tlb_nslabs = SLABS_PER_PAGE << order; + bytes = io_tlb_nslabs << IO_TLB_SHIFT; + + while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { + vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, + order); + if (vstart) + break; + order--; + } + + if (!vstart) { + io_tlb_nslabs = req_nslabs; + return -ENOMEM; + } + if (order != get_order(bytes)) { + printk(KERN_WARNING "Warning: only able to allocate %ld MB " + "for software IO TLB\n", (PAGE_SIZE << order) >> 20); + io_tlb_nslabs = SLABS_PER_PAGE << order; + } + rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); + if (rc) + free_pages((unsigned long)vstart, order); + + return rc; +} + +int +swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) +{ + unsigned long i, bytes; + unsigned char *v_overflow_buffer; + + bytes = nslabs << IO_TLB_SHIFT; + + io_tlb_nslabs = nslabs; + io_tlb_start = virt_to_phys(tlb); + io_tlb_end = io_tlb_start + bytes; + + set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); + memset(tlb, 0, bytes); + + /* + * Get the overflow emergency buffer + */ + v_overflow_buffer = (void *)__get_free_pages(GFP_DMA, + get_order(io_tlb_overflow)); + if (!v_overflow_buffer) + goto cleanup2; + + set_memory_decrypted((unsigned long)v_overflow_buffer, + io_tlb_overflow >> PAGE_SHIFT); + memset(v_overflow_buffer, 0, io_tlb_overflow); + io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer); + + /* + * Allocate and initialize the free list array. This array is used + * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE + * between io_tlb_start and io_tlb_end. + */ + io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, + get_order(io_tlb_nslabs * sizeof(int))); + if (!io_tlb_list) + goto cleanup3; + + io_tlb_orig_addr = (phys_addr_t *) + __get_free_pages(GFP_KERNEL, + get_order(io_tlb_nslabs * + sizeof(phys_addr_t))); + if (!io_tlb_orig_addr) + goto cleanup4; + + for (i = 0; i < io_tlb_nslabs; i++) { + io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); + io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; + } + io_tlb_index = 0; + + swiotlb_print_info(); + + late_alloc = 1; + + swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); + + return 0; + +cleanup4: + free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * + sizeof(int))); + io_tlb_list = NULL; +cleanup3: + free_pages((unsigned long)v_overflow_buffer, + get_order(io_tlb_overflow)); + io_tlb_overflow_buffer = 0; +cleanup2: + io_tlb_end = 0; + io_tlb_start = 0; + io_tlb_nslabs = 0; + max_segment = 0; + return -ENOMEM; +} + +void __init swiotlb_exit(void) +{ + if (!io_tlb_orig_addr) + return; + + if (late_alloc) { + free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer), + get_order(io_tlb_overflow)); + free_pages((unsigned long)io_tlb_orig_addr, + get_order(io_tlb_nslabs * sizeof(phys_addr_t))); + free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * + sizeof(int))); + free_pages((unsigned long)phys_to_virt(io_tlb_start), + get_order(io_tlb_nslabs << IO_TLB_SHIFT)); + } else { + memblock_free_late(io_tlb_overflow_buffer, + PAGE_ALIGN(io_tlb_overflow)); + memblock_free_late(__pa(io_tlb_orig_addr), + PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); + memblock_free_late(__pa(io_tlb_list), + PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); + memblock_free_late(io_tlb_start, + PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); + } + io_tlb_nslabs = 0; + max_segment = 0; +} + +int is_swiotlb_buffer(phys_addr_t paddr) +{ + return paddr >= io_tlb_start && paddr < io_tlb_end; +} + +/* + * Bounce: copy the swiotlb buffer back to the original dma location + */ +static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, + size_t size, enum dma_data_direction dir) +{ + unsigned long pfn = PFN_DOWN(orig_addr); + unsigned char *vaddr = phys_to_virt(tlb_addr); + + if (PageHighMem(pfn_to_page(pfn))) { + /* The buffer does not have a mapping. Map it in and copy */ + unsigned int offset = orig_addr & ~PAGE_MASK; + char *buffer; + unsigned int sz = 0; + unsigned long flags; + + while (size) { + sz = min_t(size_t, PAGE_SIZE - offset, size); + + local_irq_save(flags); + buffer = kmap_atomic(pfn_to_page(pfn)); + if (dir == DMA_TO_DEVICE) + memcpy(vaddr, buffer + offset, sz); + else + memcpy(buffer + offset, vaddr, sz); + kunmap_atomic(buffer); + local_irq_restore(flags); + + size -= sz; + pfn++; + vaddr += sz; + offset = 0; + } + } else if (dir == DMA_TO_DEVICE) { + memcpy(vaddr, phys_to_virt(orig_addr), size); + } else { + memcpy(phys_to_virt(orig_addr), vaddr, size); + } +} + +phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, + dma_addr_t tbl_dma_addr, + phys_addr_t orig_addr, size_t size, + enum dma_data_direction dir, + unsigned long attrs) +{ + unsigned long flags; + phys_addr_t tlb_addr; + unsigned int nslots, stride, index, wrap; + int i; + unsigned long mask; + unsigned long offset_slots; + unsigned long max_slots; + + if (no_iotlb_memory) + panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); + + if (mem_encrypt_active()) + pr_warn_once("%s is active and system is using DMA bounce buffers\n", + sme_active() ? "SME" : "SEV"); + + mask = dma_get_seg_boundary(hwdev); + + tbl_dma_addr &= mask; + + offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; + + /* + * Carefully handle integer overflow which can occur when mask == ~0UL. + */ + max_slots = mask + 1 + ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT + : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); + + /* + * For mappings greater than or equal to a page, we limit the stride + * (and hence alignment) to a page size. + */ + nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; + if (size >= PAGE_SIZE) + stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); + else + stride = 1; + + BUG_ON(!nslots); + + /* + * Find suitable number of IO TLB entries size that will fit this + * request and allocate a buffer from that IO TLB pool. + */ + spin_lock_irqsave(&io_tlb_lock, flags); + index = ALIGN(io_tlb_index, stride); + if (index >= io_tlb_nslabs) + index = 0; + wrap = index; + + do { + while (iommu_is_span_boundary(index, nslots, offset_slots, + max_slots)) { + index += stride; + if (index >= io_tlb_nslabs) + index = 0; + if (index == wrap) + goto not_found; + } + + /* + * If we find a slot that indicates we have 'nslots' number of + * contiguous buffers, we allocate the buffers from that slot + * and mark the entries as '0' indicating unavailable. + */ + if (io_tlb_list[index] >= nslots) { + int count = 0; + + for (i = index; i < (int) (index + nslots); i++) + io_tlb_list[i] = 0; + for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) + io_tlb_list[i] = ++count; + tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); + + /* + * Update the indices to avoid searching in the next + * round. + */ + io_tlb_index = ((index + nslots) < io_tlb_nslabs + ? (index + nslots) : 0); + + goto found; + } + index += stride; + if (index >= io_tlb_nslabs) + index = 0; + } while (index != wrap); + +not_found: + spin_unlock_irqrestore(&io_tlb_lock, flags); + if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) + dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); + return SWIOTLB_MAP_ERROR; +found: + spin_unlock_irqrestore(&io_tlb_lock, flags); + + /* + * Save away the mapping from the original address to the DMA address. + * This is needed when we sync the memory. Then we sync the buffer if + * needed. + */ + for (i = 0; i < nslots; i++) + io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && + (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) + swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); + + return tlb_addr; +} + +/* + * Allocates bounce buffer and returns its physical address. + */ +static phys_addr_t +map_single(struct device *hwdev, phys_addr_t phys, size_t size, + enum dma_data_direction dir, unsigned long attrs) +{ + dma_addr_t start_dma_addr; + + if (swiotlb_force == SWIOTLB_NO_FORCE) { + dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n", + &phys); + return SWIOTLB_MAP_ERROR; + } + + start_dma_addr = __phys_to_dma(hwdev, io_tlb_start); + return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, + dir, attrs); +} + +/* + * tlb_addr is the physical address of the bounce buffer to unmap. + */ +void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, + size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + unsigned long flags; + int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; + int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; + phys_addr_t orig_addr = io_tlb_orig_addr[index]; + + /* + * First, sync the memory before unmapping the entry + */ + if (orig_addr != INVALID_PHYS_ADDR && + !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && + ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) + swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); + + /* + * Return the buffer to the free list by setting the corresponding + * entries to indicate the number of contiguous entries available. + * While returning the entries to the free list, we merge the entries + * with slots below and above the pool being returned. + */ + spin_lock_irqsave(&io_tlb_lock, flags); + { + count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? + io_tlb_list[index + nslots] : 0); + /* + * Step 1: return the slots to the free list, merging the + * slots with superceeding slots + */ + for (i = index + nslots - 1; i >= index; i--) { + io_tlb_list[i] = ++count; + io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; + } + /* + * Step 2: merge the returned slots with the preceding slots, + * if available (non zero) + */ + for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) + io_tlb_list[i] = ++count; + } + spin_unlock_irqrestore(&io_tlb_lock, flags); +} + +void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, + size_t size, enum dma_data_direction dir, + enum dma_sync_target target) +{ + int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; + phys_addr_t orig_addr = io_tlb_orig_addr[index]; + + if (orig_addr == INVALID_PHYS_ADDR) + return; + orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); + + switch (target) { + case SYNC_FOR_CPU: + if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) + swiotlb_bounce(orig_addr, tlb_addr, + size, DMA_FROM_DEVICE); + else + BUG_ON(dir != DMA_TO_DEVICE); + break; + case SYNC_FOR_DEVICE: + if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) + swiotlb_bounce(orig_addr, tlb_addr, + size, DMA_TO_DEVICE); + else + BUG_ON(dir != DMA_FROM_DEVICE); + break; + default: + BUG(); + } +} + +static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr, + size_t size) +{ + u64 mask = DMA_BIT_MASK(32); + + if (dev && dev->coherent_dma_mask) + mask = dev->coherent_dma_mask; + return addr + size - 1 <= mask; +} + +static void * +swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle, + unsigned long attrs) +{ + phys_addr_t phys_addr; + + if (swiotlb_force == SWIOTLB_NO_FORCE) + goto out_warn; + + phys_addr = swiotlb_tbl_map_single(dev, + __phys_to_dma(dev, io_tlb_start), + 0, size, DMA_FROM_DEVICE, attrs); + if (phys_addr == SWIOTLB_MAP_ERROR) + goto out_warn; + + *dma_handle = __phys_to_dma(dev, phys_addr); + if (!dma_coherent_ok(dev, *dma_handle, size)) + goto out_unmap; + + memset(phys_to_virt(phys_addr), 0, size); + return phys_to_virt(phys_addr); + +out_unmap: + dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", + (unsigned long long)dev->coherent_dma_mask, + (unsigned long long)*dma_handle); + + /* + * DMA_TO_DEVICE to avoid memcpy in unmap_single. + * DMA_ATTR_SKIP_CPU_SYNC is optional. + */ + swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, + DMA_ATTR_SKIP_CPU_SYNC); +out_warn: + if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) { + dev_warn(dev, + "swiotlb: coherent allocation failed, size=%zu\n", + size); + dump_stack(); + } + return NULL; +} + +static bool swiotlb_free_buffer(struct device *dev, size_t size, + dma_addr_t dma_addr) +{ + phys_addr_t phys_addr = dma_to_phys(dev, dma_addr); + + WARN_ON_ONCE(irqs_disabled()); + + if (!is_swiotlb_buffer(phys_addr)) + return false; + + /* + * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single. + * DMA_ATTR_SKIP_CPU_SYNC is optional. + */ + swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, + DMA_ATTR_SKIP_CPU_SYNC); + return true; +} + +static void +swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir, + int do_panic) +{ + if (swiotlb_force == SWIOTLB_NO_FORCE) + return; + + /* + * Ran out of IOMMU space for this operation. This is very bad. + * Unfortunately the drivers cannot handle this operation properly. + * unless they check for dma_mapping_error (most don't) + * When the mapping is small enough return a static buffer to limit + * the damage, or panic when the transfer is too big. + */ + dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n", + size); + + if (size <= io_tlb_overflow || !do_panic) + return; + + if (dir == DMA_BIDIRECTIONAL) + panic("DMA: Random memory could be DMA accessed\n"); + if (dir == DMA_FROM_DEVICE) + panic("DMA: Random memory could be DMA written\n"); + if (dir == DMA_TO_DEVICE) + panic("DMA: Random memory could be DMA read\n"); +} + +/* + * Map a single buffer of the indicated size for DMA in streaming mode. The + * physical address to use is returned. + * + * Once the device is given the dma address, the device owns this memory until + * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. + */ +dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, + enum dma_data_direction dir, + unsigned long attrs) +{ + phys_addr_t map, phys = page_to_phys(page) + offset; + dma_addr_t dev_addr = phys_to_dma(dev, phys); + + BUG_ON(dir == DMA_NONE); + /* + * If the address happens to be in the device's DMA window, + * we can safely return the device addr and not worry about bounce + * buffering it. + */ + if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE) + return dev_addr; + + trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); + + /* Oh well, have to allocate and map a bounce buffer. */ + map = map_single(dev, phys, size, dir, attrs); + if (map == SWIOTLB_MAP_ERROR) { + swiotlb_full(dev, size, dir, 1); + return __phys_to_dma(dev, io_tlb_overflow_buffer); + } + + dev_addr = __phys_to_dma(dev, map); + + /* Ensure that the address returned is DMA'ble */ + if (dma_capable(dev, dev_addr, size)) + return dev_addr; + + attrs |= DMA_ATTR_SKIP_CPU_SYNC; + swiotlb_tbl_unmap_single(dev, map, size, dir, attrs); + + return __phys_to_dma(dev, io_tlb_overflow_buffer); +} + +/* + * Unmap a single streaming mode DMA translation. The dma_addr and size must + * match what was provided for in a previous swiotlb_map_page call. All + * other usages are undefined. + * + * After this call, reads by the cpu to the buffer are guaranteed to see + * whatever the device wrote there. + */ +static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); + + BUG_ON(dir == DMA_NONE); + + if (is_swiotlb_buffer(paddr)) { + swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); + return; + } + + if (dir != DMA_FROM_DEVICE) + return; + + /* + * phys_to_virt doesn't work with hihgmem page but we could + * call dma_mark_clean() with hihgmem page here. However, we + * are fine since dma_mark_clean() is null on POWERPC. We can + * make dma_mark_clean() take a physical address if necessary. + */ + dma_mark_clean(phys_to_virt(paddr), size); +} + +void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + unmap_single(hwdev, dev_addr, size, dir, attrs); +} + +/* + * Make physical memory consistent for a single streaming mode DMA translation + * after a transfer. + * + * If you perform a swiotlb_map_page() but wish to interrogate the buffer + * using the cpu, yet do not wish to teardown the dma mapping, you must + * call this function before doing so. At the next point you give the dma + * address back to the card, you must first perform a + * swiotlb_dma_sync_for_device, and then the device again owns the buffer + */ +static void +swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir, + enum dma_sync_target target) +{ + phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); + + BUG_ON(dir == DMA_NONE); + + if (is_swiotlb_buffer(paddr)) { + swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); + return; + } + + if (dir != DMA_FROM_DEVICE) + return; + + dma_mark_clean(phys_to_virt(paddr), size); +} + +void +swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir) +{ + swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); +} + +void +swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir) +{ + swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); +} + +/* + * Map a set of buffers described by scatterlist in streaming mode for DMA. + * This is the scatter-gather version of the above swiotlb_map_page + * interface. Here the scatter gather list elements are each tagged with the + * appropriate dma address and length. They are obtained via + * sg_dma_{address,length}(SG). + * + * NOTE: An implementation may be able to use a smaller number of + * DMA address/length pairs than there are SG table elements. + * (for example via virtual mapping capabilities) + * The routine returns the number of addr/length pairs actually + * used, at most nents. + * + * Device ownership issues as mentioned above for swiotlb_map_page are the + * same here. + */ +int +swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, + enum dma_data_direction dir, unsigned long attrs) +{ + struct scatterlist *sg; + int i; + + BUG_ON(dir == DMA_NONE); + + for_each_sg(sgl, sg, nelems, i) { + phys_addr_t paddr = sg_phys(sg); + dma_addr_t dev_addr = phys_to_dma(hwdev, paddr); + + if (swiotlb_force == SWIOTLB_FORCE || + !dma_capable(hwdev, dev_addr, sg->length)) { + phys_addr_t map = map_single(hwdev, sg_phys(sg), + sg->length, dir, attrs); + if (map == SWIOTLB_MAP_ERROR) { + /* Don't panic here, we expect map_sg users + to do proper error handling. */ + swiotlb_full(hwdev, sg->length, dir, 0); + attrs |= DMA_ATTR_SKIP_CPU_SYNC; + swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, + attrs); + sg_dma_len(sgl) = 0; + return 0; + } + sg->dma_address = __phys_to_dma(hwdev, map); + } else + sg->dma_address = dev_addr; + sg_dma_len(sg) = sg->length; + } + return nelems; +} + +/* + * Unmap a set of streaming mode DMA translations. Again, cpu read rules + * concerning calls here are the same as for swiotlb_unmap_page() above. + */ +void +swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, + int nelems, enum dma_data_direction dir, + unsigned long attrs) +{ + struct scatterlist *sg; + int i; + + BUG_ON(dir == DMA_NONE); + + for_each_sg(sgl, sg, nelems, i) + unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, + attrs); +} + +/* + * Make physical memory consistent for a set of streaming mode DMA translations + * after a transfer. + * + * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules + * and usage. + */ +static void +swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, + int nelems, enum dma_data_direction dir, + enum dma_sync_target target) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sgl, sg, nelems, i) + swiotlb_sync_single(hwdev, sg->dma_address, + sg_dma_len(sg), dir, target); +} + +void +swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, + int nelems, enum dma_data_direction dir) +{ + swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); +} + +void +swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, + int nelems, enum dma_data_direction dir) +{ + swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); +} + +int +swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) +{ + return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer)); +} + +/* + * Return whether the given device DMA address mask can be supported + * properly. For example, if your device can only drive the low 24-bits + * during bus mastering, then you would pass 0x00ffffff as the mask to + * this function. + */ +int +swiotlb_dma_supported(struct device *hwdev, u64 mask) +{ + return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask; +} + +void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, + gfp_t gfp, unsigned long attrs) +{ + void *vaddr; + + /* temporary workaround: */ + if (gfp & __GFP_NOWARN) + attrs |= DMA_ATTR_NO_WARN; + + /* + * Don't print a warning when the first allocation attempt fails. + * swiotlb_alloc_coherent() will print a warning when the DMA memory + * allocation ultimately failed. + */ + gfp |= __GFP_NOWARN; + + vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs); + if (!vaddr) + vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs); + return vaddr; +} + +void swiotlb_free(struct device *dev, size_t size, void *vaddr, + dma_addr_t dma_addr, unsigned long attrs) +{ + if (!swiotlb_free_buffer(dev, size, dma_addr)) + dma_direct_free(dev, size, vaddr, dma_addr, attrs); +} + +const struct dma_map_ops swiotlb_dma_ops = { + .mapping_error = swiotlb_dma_mapping_error, + .alloc = swiotlb_alloc, + .free = swiotlb_free, + .sync_single_for_cpu = swiotlb_sync_single_for_cpu, + .sync_single_for_device = swiotlb_sync_single_for_device, + .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, + .sync_sg_for_device = swiotlb_sync_sg_for_device, + .map_sg = swiotlb_map_sg_attrs, + .unmap_sg = swiotlb_unmap_sg_attrs, + .map_page = swiotlb_map_page, + .unmap_page = swiotlb_unmap_page, + .dma_supported = dma_direct_supported, +}; +EXPORT_SYMBOL(swiotlb_dma_ops); diff --git a/kernel/dma/virt.c b/kernel/dma/virt.c new file mode 100644 index 000000000000..631ddec4b60a --- /dev/null +++ b/kernel/dma/virt.c @@ -0,0 +1,59 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * DMA operations that map to virtual addresses without flushing memory. + */ +#include <linux/export.h> +#include <linux/mm.h> +#include <linux/dma-mapping.h> +#include <linux/scatterlist.h> + +static void *dma_virt_alloc(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp, + unsigned long attrs) +{ + void *ret; + + ret = (void *)__get_free_pages(gfp, get_order(size)); + if (ret) + *dma_handle = (uintptr_t)ret; + return ret; +} + +static void dma_virt_free(struct device *dev, size_t size, + void *cpu_addr, dma_addr_t dma_addr, + unsigned long attrs) +{ + free_pages((unsigned long)cpu_addr, get_order(size)); +} + +static dma_addr_t dma_virt_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, + enum dma_data_direction dir, + unsigned long attrs) +{ + return (uintptr_t)(page_address(page) + offset); +} + +static int dma_virt_map_sg(struct device *dev, struct scatterlist *sgl, + int nents, enum dma_data_direction dir, + unsigned long attrs) +{ + int i; + struct scatterlist *sg; + + for_each_sg(sgl, sg, nents, i) { + BUG_ON(!sg_page(sg)); + sg_dma_address(sg) = (uintptr_t)sg_virt(sg); + sg_dma_len(sg) = sg->length; + } + + return nents; +} + +const struct dma_map_ops dma_virt_ops = { + .alloc = dma_virt_alloc, + .free = dma_virt_free, + .map_page = dma_virt_map_page, + .map_sg = dma_virt_map_sg, +}; +EXPORT_SYMBOL(dma_virt_ops); diff --git a/kernel/events/core.c b/kernel/events/core.c index 80cca2b30c4f..eec2d5fb676b 100644 --- a/kernel/events/core.c +++ b/kernel/events/core.c @@ -6343,7 +6343,7 @@ static u64 perf_virt_to_phys(u64 virt) static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; -static struct perf_callchain_entry * +struct perf_callchain_entry * perf_callchain(struct perf_event *event, struct pt_regs *regs) { bool kernel = !event->attr.exclude_callchain_kernel; @@ -6382,7 +6382,9 @@ void perf_prepare_sample(struct perf_event_header *header, if (sample_type & PERF_SAMPLE_CALLCHAIN) { int size = 1; - data->callchain = perf_callchain(event, regs); + if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) + data->callchain = perf_callchain(event, regs); + size += data->callchain->nr; header->size += size * sizeof(u64); @@ -6482,7 +6484,7 @@ void perf_prepare_sample(struct perf_event_header *header, data->phys_addr = perf_virt_to_phys(data->addr); } -static void __always_inline +static __always_inline void __perf_event_output(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs, @@ -7335,6 +7337,10 @@ static bool perf_addr_filter_match(struct perf_addr_filter *filter, struct file *file, unsigned long offset, unsigned long size) { + /* d_inode(NULL) won't be equal to any mapped user-space file */ + if (!filter->path.dentry) + return false; + if (d_inode(filter->path.dentry) != file_inode(file)) return false; diff --git a/kernel/events/ring_buffer.c b/kernel/events/ring_buffer.c index 045a37e9ddee..5d3cf407e374 100644 --- a/kernel/events/ring_buffer.c +++ b/kernel/events/ring_buffer.c @@ -103,7 +103,7 @@ out: preempt_enable(); } -static bool __always_inline +static __always_inline bool ring_buffer_has_space(unsigned long head, unsigned long tail, unsigned long data_size, unsigned int size, bool backward) @@ -114,7 +114,7 @@ ring_buffer_has_space(unsigned long head, unsigned long tail, return CIRC_SPACE(tail, head, data_size) >= size; } -static int __always_inline +static __always_inline int __perf_output_begin(struct perf_output_handle *handle, struct perf_event *event, unsigned int size, bool backward) @@ -414,7 +414,7 @@ err: } EXPORT_SYMBOL_GPL(perf_aux_output_begin); -static bool __always_inline rb_need_aux_wakeup(struct ring_buffer *rb) +static __always_inline bool rb_need_aux_wakeup(struct ring_buffer *rb) { if (rb->aux_overwrite) return false; diff --git a/kernel/fork.c b/kernel/fork.c index 9440d61b925c..1b27babc4c78 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -303,11 +303,36 @@ struct kmem_cache *files_cachep; struct kmem_cache *fs_cachep; /* SLAB cache for vm_area_struct structures */ -struct kmem_cache *vm_area_cachep; +static struct kmem_cache *vm_area_cachep; /* SLAB cache for mm_struct structures (tsk->mm) */ static struct kmem_cache *mm_cachep; +struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) +{ + struct vm_area_struct *vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); + + if (vma) + vma_init(vma, mm); + return vma; +} + +struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) +{ + struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); + + if (new) { + *new = *orig; + INIT_LIST_HEAD(&new->anon_vma_chain); + } + return new; +} + +void vm_area_free(struct vm_area_struct *vma) +{ + kmem_cache_free(vm_area_cachep, vma); +} + static void account_kernel_stack(struct task_struct *tsk, int account) { void *stack = task_stack_page(tsk); @@ -455,11 +480,9 @@ static __latent_entropy int dup_mmap(struct mm_struct *mm, goto fail_nomem; charge = len; } - tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); + tmp = vm_area_dup(mpnt); if (!tmp) goto fail_nomem; - *tmp = *mpnt; - INIT_LIST_HEAD(&tmp->anon_vma_chain); retval = vma_dup_policy(mpnt, tmp); if (retval) goto fail_nomem_policy; @@ -539,7 +562,7 @@ fail_uprobe_end: fail_nomem_anon_vma_fork: mpol_put(vma_policy(tmp)); fail_nomem_policy: - kmem_cache_free(vm_area_cachep, tmp); + vm_area_free(tmp); fail_nomem: retval = -ENOMEM; vm_unacct_memory(charge); diff --git a/kernel/irq/debugfs.c b/kernel/irq/debugfs.c index 4dadeb3d6666..6f636136cccc 100644 --- a/kernel/irq/debugfs.c +++ b/kernel/irq/debugfs.c @@ -55,6 +55,7 @@ static const struct irq_bit_descr irqchip_flags[] = { BIT_MASK_DESCR(IRQCHIP_SKIP_SET_WAKE), BIT_MASK_DESCR(IRQCHIP_ONESHOT_SAFE), BIT_MASK_DESCR(IRQCHIP_EOI_THREADED), + BIT_MASK_DESCR(IRQCHIP_SUPPORTS_LEVEL_MSI), }; static void diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c index daeabd791d58..9a8b7ba9aa88 100644 --- a/kernel/irq/manage.c +++ b/kernel/irq/manage.c @@ -1068,6 +1068,13 @@ static int irq_setup_forced_threading(struct irqaction *new) if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT)) return 0; + /* + * No further action required for interrupts which are requested as + * threaded interrupts already + */ + if (new->handler == irq_default_primary_handler) + return 0; + new->flags |= IRQF_ONESHOT; /* @@ -1075,7 +1082,7 @@ static int irq_setup_forced_threading(struct irqaction *new) * thread handler. We force thread them as well by creating a * secondary action. */ - if (new->handler != irq_default_primary_handler && new->thread_fn) { + if (new->handler && new->thread_fn) { /* Allocate the secondary action */ new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL); if (!new->secondary) diff --git a/kernel/kthread.c b/kernel/kthread.c index 481951bf091d..486dedbd9af5 100644 --- a/kernel/kthread.c +++ b/kernel/kthread.c @@ -177,9 +177,20 @@ void *kthread_probe_data(struct task_struct *task) static void __kthread_parkme(struct kthread *self) { for (;;) { - set_current_state(TASK_PARKED); + /* + * TASK_PARKED is a special state; we must serialize against + * possible pending wakeups to avoid store-store collisions on + * task->state. + * + * Such a collision might possibly result in the task state + * changin from TASK_PARKED and us failing the + * wait_task_inactive() in kthread_park(). + */ + set_special_state(TASK_PARKED); if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) break; + + complete_all(&self->parked); schedule(); } __set_current_state(TASK_RUNNING); @@ -191,11 +202,6 @@ void kthread_parkme(void) } EXPORT_SYMBOL_GPL(kthread_parkme); -void kthread_park_complete(struct task_struct *k) -{ - complete_all(&to_kthread(k)->parked); -} - static int kthread(void *_create) { /* Copy data: it's on kthread's stack */ @@ -319,8 +325,14 @@ struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), task = create->result; if (!IS_ERR(task)) { static const struct sched_param param = { .sched_priority = 0 }; + char name[TASK_COMM_LEN]; - vsnprintf(task->comm, sizeof(task->comm), namefmt, args); + /* + * task is already visible to other tasks, so updating + * COMM must be protected. + */ + vsnprintf(name, sizeof(name), namefmt, args); + set_task_comm(task, name); /* * root may have changed our (kthreadd's) priority or CPU mask. * The kernel thread should not inherit these properties. @@ -461,6 +473,9 @@ void kthread_unpark(struct task_struct *k) reinit_completion(&kthread->parked); clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); + /* + * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. + */ wake_up_state(k, TASK_PARKED); } EXPORT_SYMBOL_GPL(kthread_unpark); @@ -487,7 +502,16 @@ int kthread_park(struct task_struct *k) set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); if (k != current) { wake_up_process(k); + /* + * Wait for __kthread_parkme() to complete(), this means we + * _will_ have TASK_PARKED and are about to call schedule(). + */ wait_for_completion(&kthread->parked); + /* + * Now wait for that schedule() to complete and the task to + * get scheduled out. + */ + WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); } return 0; diff --git a/kernel/locking/lockdep.c b/kernel/locking/lockdep.c index edcac5de7ebc..5fa4d3138bf1 100644 --- a/kernel/locking/lockdep.c +++ b/kernel/locking/lockdep.c @@ -1265,11 +1265,11 @@ unsigned long lockdep_count_forward_deps(struct lock_class *class) this.parent = NULL; this.class = class; - local_irq_save(flags); + raw_local_irq_save(flags); arch_spin_lock(&lockdep_lock); ret = __lockdep_count_forward_deps(&this); arch_spin_unlock(&lockdep_lock); - local_irq_restore(flags); + raw_local_irq_restore(flags); return ret; } @@ -1292,11 +1292,11 @@ unsigned long lockdep_count_backward_deps(struct lock_class *class) this.parent = NULL; this.class = class; - local_irq_save(flags); + raw_local_irq_save(flags); arch_spin_lock(&lockdep_lock); ret = __lockdep_count_backward_deps(&this); arch_spin_unlock(&lockdep_lock); - local_irq_restore(flags); + raw_local_irq_restore(flags); return ret; } @@ -4411,7 +4411,7 @@ void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) if (unlikely(!debug_locks)) return; - local_irq_save(flags); + raw_local_irq_save(flags); for (i = 0; i < curr->lockdep_depth; i++) { hlock = curr->held_locks + i; @@ -4422,7 +4422,7 @@ void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); break; } - local_irq_restore(flags); + raw_local_irq_restore(flags); } EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c index 4f014be7a4b8..2823d4163a37 100644 --- a/kernel/locking/rtmutex.c +++ b/kernel/locking/rtmutex.c @@ -1465,6 +1465,29 @@ rt_mutex_fastunlock(struct rt_mutex *lock, rt_mutex_postunlock(&wake_q); } +static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass) +{ + might_sleep(); + + mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_); + rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock); +} + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +/** + * rt_mutex_lock_nested - lock a rt_mutex + * + * @lock: the rt_mutex to be locked + * @subclass: the lockdep subclass + */ +void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass) +{ + __rt_mutex_lock(lock, subclass); +} +EXPORT_SYMBOL_GPL(rt_mutex_lock_nested); +#endif + +#ifndef CONFIG_DEBUG_LOCK_ALLOC /** * rt_mutex_lock - lock a rt_mutex * @@ -1472,12 +1495,10 @@ rt_mutex_fastunlock(struct rt_mutex *lock, */ void __sched rt_mutex_lock(struct rt_mutex *lock) { - might_sleep(); - - mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); - rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock); + __rt_mutex_lock(lock, 0); } EXPORT_SYMBOL_GPL(rt_mutex_lock); +#endif /** * rt_mutex_lock_interruptible - lock a rt_mutex interruptible diff --git a/kernel/locking/rwsem.c b/kernel/locking/rwsem.c index bc1e507be9ff..776308d2fa9e 100644 --- a/kernel/locking/rwsem.c +++ b/kernel/locking/rwsem.c @@ -181,6 +181,7 @@ void down_read_non_owner(struct rw_semaphore *sem) might_sleep(); __down_read(sem); + rwsem_set_reader_owned(sem); } EXPORT_SYMBOL(down_read_non_owner); diff --git a/kernel/memremap.c b/kernel/memremap.c index 5857267a4af5..38283363da06 100644 --- a/kernel/memremap.c +++ b/kernel/memremap.c @@ -176,10 +176,27 @@ void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap) unsigned long pfn, pgoff, order; pgprot_t pgprot = PAGE_KERNEL; int error, nid, is_ram; + struct dev_pagemap *conflict_pgmap; align_start = res->start & ~(SECTION_SIZE - 1); align_size = ALIGN(res->start + resource_size(res), SECTION_SIZE) - align_start; + align_end = align_start + align_size - 1; + + conflict_pgmap = get_dev_pagemap(PHYS_PFN(align_start), NULL); + if (conflict_pgmap) { + dev_WARN(dev, "Conflicting mapping in same section\n"); + put_dev_pagemap(conflict_pgmap); + return ERR_PTR(-ENOMEM); + } + + conflict_pgmap = get_dev_pagemap(PHYS_PFN(align_end), NULL); + if (conflict_pgmap) { + dev_WARN(dev, "Conflicting mapping in same section\n"); + put_dev_pagemap(conflict_pgmap); + return ERR_PTR(-ENOMEM); + } + is_ram = region_intersects(align_start, align_size, IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE); @@ -199,7 +216,6 @@ void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap) mutex_lock(&pgmap_lock); error = 0; - align_end = align_start + align_size - 1; foreach_order_pgoff(res, order, pgoff) { error = __radix_tree_insert(&pgmap_radix, @@ -305,7 +321,7 @@ EXPORT_SYMBOL_GPL(get_dev_pagemap); #ifdef CONFIG_DEV_PAGEMAP_OPS DEFINE_STATIC_KEY_FALSE(devmap_managed_key); -EXPORT_SYMBOL_GPL(devmap_managed_key); +EXPORT_SYMBOL(devmap_managed_key); static atomic_t devmap_enable; /* @@ -346,5 +362,5 @@ void __put_devmap_managed_page(struct page *page) } else if (!count) __put_page(page); } -EXPORT_SYMBOL_GPL(__put_devmap_managed_page); +EXPORT_SYMBOL(__put_devmap_managed_page); #endif /* CONFIG_DEV_PAGEMAP_OPS */ diff --git a/kernel/rseq.c b/kernel/rseq.c index ae306f90c514..c6242d8594dc 100644 --- a/kernel/rseq.c +++ b/kernel/rseq.c @@ -85,9 +85,9 @@ static int rseq_update_cpu_id(struct task_struct *t) { u32 cpu_id = raw_smp_processor_id(); - if (__put_user(cpu_id, &t->rseq->cpu_id_start)) + if (put_user(cpu_id, &t->rseq->cpu_id_start)) return -EFAULT; - if (__put_user(cpu_id, &t->rseq->cpu_id)) + if (put_user(cpu_id, &t->rseq->cpu_id)) return -EFAULT; trace_rseq_update(t); return 0; @@ -100,14 +100,14 @@ static int rseq_reset_rseq_cpu_id(struct task_struct *t) /* * Reset cpu_id_start to its initial state (0). */ - if (__put_user(cpu_id_start, &t->rseq->cpu_id_start)) + if (put_user(cpu_id_start, &t->rseq->cpu_id_start)) return -EFAULT; /* * Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming * in after unregistration can figure out that rseq needs to be * registered again. */ - if (__put_user(cpu_id, &t->rseq->cpu_id)) + if (put_user(cpu_id, &t->rseq->cpu_id)) return -EFAULT; return 0; } @@ -115,29 +115,36 @@ static int rseq_reset_rseq_cpu_id(struct task_struct *t) static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs) { struct rseq_cs __user *urseq_cs; - unsigned long ptr; + u64 ptr; u32 __user *usig; u32 sig; int ret; - ret = __get_user(ptr, &t->rseq->rseq_cs); - if (ret) - return ret; + if (copy_from_user(&ptr, &t->rseq->rseq_cs.ptr64, sizeof(ptr))) + return -EFAULT; if (!ptr) { memset(rseq_cs, 0, sizeof(*rseq_cs)); return 0; } - urseq_cs = (struct rseq_cs __user *)ptr; + if (ptr >= TASK_SIZE) + return -EINVAL; + urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr; if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs))) return -EFAULT; - if (rseq_cs->version > 0) - return -EINVAL; + if (rseq_cs->start_ip >= TASK_SIZE || + rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE || + rseq_cs->abort_ip >= TASK_SIZE || + rseq_cs->version > 0) + return -EINVAL; + /* Check for overflow. */ + if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip) + return -EINVAL; /* Ensure that abort_ip is not in the critical section. */ if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset) return -EINVAL; - usig = (u32 __user *)(rseq_cs->abort_ip - sizeof(u32)); + usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32)); ret = get_user(sig, usig); if (ret) return ret; @@ -146,7 +153,7 @@ static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs) printk_ratelimited(KERN_WARNING "Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n", sig, current->rseq_sig, current->pid, usig); - return -EPERM; + return -EINVAL; } return 0; } @@ -157,7 +164,7 @@ static int rseq_need_restart(struct task_struct *t, u32 cs_flags) int ret; /* Get thread flags. */ - ret = __get_user(flags, &t->rseq->flags); + ret = get_user(flags, &t->rseq->flags); if (ret) return ret; @@ -195,9 +202,11 @@ static int clear_rseq_cs(struct task_struct *t) * of code outside of the rseq assembly block. This performs * a lazy clear of the rseq_cs field. * - * Set rseq_cs to NULL with single-copy atomicity. + * Set rseq_cs to NULL. */ - return __put_user(0UL, &t->rseq->rseq_cs); + if (clear_user(&t->rseq->rseq_cs.ptr64, sizeof(t->rseq->rseq_cs.ptr64))) + return -EFAULT; + return 0; } /* @@ -251,10 +260,10 @@ static int rseq_ip_fixup(struct pt_regs *regs) * respect to other threads scheduled on the same CPU, and with respect * to signal handlers. */ -void __rseq_handle_notify_resume(struct pt_regs *regs) +void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs) { struct task_struct *t = current; - int ret; + int ret, sig; if (unlikely(t->flags & PF_EXITING)) return; @@ -268,7 +277,8 @@ void __rseq_handle_notify_resume(struct pt_regs *regs) return; error: - force_sig(SIGSEGV, t); + sig = ksig ? ksig->sig : 0; + force_sigsegv(sig, t); } #ifdef CONFIG_DEBUG_RSEQ diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 78d8facba456..fe365c9a08e9 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -7,7 +7,6 @@ */ #include "sched.h" -#include <linux/kthread.h> #include <linux/nospec.h> #include <linux/kcov.h> @@ -2724,28 +2723,20 @@ static struct rq *finish_task_switch(struct task_struct *prev) membarrier_mm_sync_core_before_usermode(mm); mmdrop(mm); } - if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) { - switch (prev_state) { - case TASK_DEAD: - if (prev->sched_class->task_dead) - prev->sched_class->task_dead(prev); + if (unlikely(prev_state == TASK_DEAD)) { + if (prev->sched_class->task_dead) + prev->sched_class->task_dead(prev); - /* - * Remove function-return probe instances associated with this - * task and put them back on the free list. - */ - kprobe_flush_task(prev); - - /* Task is done with its stack. */ - put_task_stack(prev); + /* + * Remove function-return probe instances associated with this + * task and put them back on the free list. + */ + kprobe_flush_task(prev); - put_task_struct(prev); - break; + /* Task is done with its stack. */ + put_task_stack(prev); - case TASK_PARKED: - kthread_park_complete(prev); - break; - } + put_task_struct(prev); } tick_nohz_task_switch(); @@ -3113,7 +3104,9 @@ static void sched_tick_remote(struct work_struct *work) struct tick_work *twork = container_of(dwork, struct tick_work, work); int cpu = twork->cpu; struct rq *rq = cpu_rq(cpu); + struct task_struct *curr; struct rq_flags rf; + u64 delta; /* * Handle the tick only if it appears the remote CPU is running in full @@ -3122,24 +3115,28 @@ static void sched_tick_remote(struct work_struct *work) * statistics and checks timeslices in a time-independent way, regardless * of when exactly it is running. */ - if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) { - struct task_struct *curr; - u64 delta; + if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) + goto out_requeue; - rq_lock_irq(rq, &rf); - update_rq_clock(rq); - curr = rq->curr; - delta = rq_clock_task(rq) - curr->se.exec_start; + rq_lock_irq(rq, &rf); + curr = rq->curr; + if (is_idle_task(curr)) + goto out_unlock; - /* - * Make sure the next tick runs within a reasonable - * amount of time. - */ - WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); - curr->sched_class->task_tick(rq, curr, 0); - rq_unlock_irq(rq, &rf); - } + update_rq_clock(rq); + delta = rq_clock_task(rq) - curr->se.exec_start; + + /* + * Make sure the next tick runs within a reasonable + * amount of time. + */ + WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); + curr->sched_class->task_tick(rq, curr, 0); + +out_unlock: + rq_unlock_irq(rq, &rf); +out_requeue: /* * Run the remote tick once per second (1Hz). This arbitrary * frequency is large enough to avoid overload but short enough diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c index 3cde46483f0a..c907fde01eaa 100644 --- a/kernel/sched/cpufreq_schedutil.c +++ b/kernel/sched/cpufreq_schedutil.c @@ -192,7 +192,7 @@ static unsigned long sugov_aggregate_util(struct sugov_cpu *sg_cpu) { struct rq *rq = cpu_rq(sg_cpu->cpu); - if (rq->rt.rt_nr_running) + if (rt_rq_is_runnable(&rq->rt)) return sg_cpu->max; /* diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c index fbfc3f1d368a..b5fbdde6afa9 100644 --- a/kernel/sched/deadline.c +++ b/kernel/sched/deadline.c @@ -2090,8 +2090,14 @@ retry: sub_rq_bw(&next_task->dl, &rq->dl); set_task_cpu(next_task, later_rq->cpu); add_rq_bw(&next_task->dl, &later_rq->dl); + + /* + * Update the later_rq clock here, because the clock is used + * by the cpufreq_update_util() inside __add_running_bw(). + */ + update_rq_clock(later_rq); add_running_bw(&next_task->dl, &later_rq->dl); - activate_task(later_rq, next_task, 0); + activate_task(later_rq, next_task, ENQUEUE_NOCLOCK); ret = 1; resched_curr(later_rq); @@ -2290,8 +2296,17 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p) if (task_on_rq_queued(p) && p->dl.dl_runtime) task_non_contending(p); - if (!task_on_rq_queued(p)) + if (!task_on_rq_queued(p)) { + /* + * Inactive timer is armed. However, p is leaving DEADLINE and + * might migrate away from this rq while continuing to run on + * some other class. We need to remove its contribution from + * this rq running_bw now, or sub_rq_bw (below) will complain. + */ + if (p->dl.dl_non_contending) + sub_running_bw(&p->dl, &rq->dl); sub_rq_bw(&p->dl, &rq->dl); + } /* * We cannot use inactive_task_timer() to invoke sub_running_bw() diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 1866e64792a7..2f0a0be4d344 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -3982,18 +3982,10 @@ util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) if (!sched_feat(UTIL_EST)) return; - /* - * Update root cfs_rq's estimated utilization - * - * If *p is the last task then the root cfs_rq's estimated utilization - * of a CPU is 0 by definition. - */ - ue.enqueued = 0; - if (cfs_rq->nr_running) { - ue.enqueued = cfs_rq->avg.util_est.enqueued; - ue.enqueued -= min_t(unsigned int, ue.enqueued, - (_task_util_est(p) | UTIL_AVG_UNCHANGED)); - } + /* Update root cfs_rq's estimated utilization */ + ue.enqueued = cfs_rq->avg.util_est.enqueued; + ue.enqueued -= min_t(unsigned int, ue.enqueued, + (_task_util_est(p) | UTIL_AVG_UNCHANGED)); WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); /* @@ -4590,6 +4582,7 @@ void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) now = sched_clock_cpu(smp_processor_id()); cfs_b->runtime = cfs_b->quota; cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); + cfs_b->expires_seq++; } static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) @@ -4612,6 +4605,7 @@ static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) struct task_group *tg = cfs_rq->tg; struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); u64 amount = 0, min_amount, expires; + int expires_seq; /* note: this is a positive sum as runtime_remaining <= 0 */ min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; @@ -4628,6 +4622,7 @@ static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) cfs_b->idle = 0; } } + expires_seq = cfs_b->expires_seq; expires = cfs_b->runtime_expires; raw_spin_unlock(&cfs_b->lock); @@ -4637,8 +4632,10 @@ static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) * spread between our sched_clock and the one on which runtime was * issued. */ - if ((s64)(expires - cfs_rq->runtime_expires) > 0) + if (cfs_rq->expires_seq != expires_seq) { + cfs_rq->expires_seq = expires_seq; cfs_rq->runtime_expires = expires; + } return cfs_rq->runtime_remaining > 0; } @@ -4664,12 +4661,9 @@ static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) * has not truly expired. * * Fortunately we can check determine whether this the case by checking - * whether the global deadline has advanced. It is valid to compare - * cfs_b->runtime_expires without any locks since we only care about - * exact equality, so a partial write will still work. + * whether the global deadline(cfs_b->expires_seq) has advanced. */ - - if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { + if (cfs_rq->expires_seq == cfs_b->expires_seq) { /* extend local deadline, drift is bounded above by 2 ticks */ cfs_rq->runtime_expires += TICK_NSEC; } else { @@ -5202,13 +5196,18 @@ static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) { + u64 overrun; + lockdep_assert_held(&cfs_b->lock); - if (!cfs_b->period_active) { - cfs_b->period_active = 1; - hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); - hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); - } + if (cfs_b->period_active) + return; + + cfs_b->period_active = 1; + overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); + cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); + cfs_b->expires_seq++; + hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); } static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c index 47556b0c9a95..eaaec8364f96 100644 --- a/kernel/sched/rt.c +++ b/kernel/sched/rt.c @@ -508,8 +508,11 @@ static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) rt_se = rt_rq->tg->rt_se[cpu]; - if (!rt_se) + if (!rt_se) { dequeue_top_rt_rq(rt_rq); + /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ + cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); + } else if (on_rt_rq(rt_se)) dequeue_rt_entity(rt_se, 0); } @@ -833,6 +836,8 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) * can be time-consuming. Try to avoid it when possible. */ raw_spin_lock(&rt_rq->rt_runtime_lock); + if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) + rt_rq->rt_runtime = rt_b->rt_runtime; skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; raw_spin_unlock(&rt_rq->rt_runtime_lock); if (skip) @@ -1001,8 +1006,6 @@ dequeue_top_rt_rq(struct rt_rq *rt_rq) sub_nr_running(rq, rt_rq->rt_nr_running); rt_rq->rt_queued = 0; - /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ - cpufreq_update_util(rq, 0); } static void @@ -1014,11 +1017,14 @@ enqueue_top_rt_rq(struct rt_rq *rt_rq) if (rt_rq->rt_queued) return; - if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) + + if (rt_rq_throttled(rt_rq)) return; - add_nr_running(rq, rt_rq->rt_nr_running); - rt_rq->rt_queued = 1; + if (rt_rq->rt_nr_running) { + add_nr_running(rq, rt_rq->rt_nr_running); + rt_rq->rt_queued = 1; + } /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ cpufreq_update_util(rq, 0); diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 6601baf2361c..c7742dcc136c 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -334,9 +334,10 @@ struct cfs_bandwidth { u64 runtime; s64 hierarchical_quota; u64 runtime_expires; + int expires_seq; - int idle; - int period_active; + short idle; + short period_active; struct hrtimer period_timer; struct hrtimer slack_timer; struct list_head throttled_cfs_rq; @@ -551,6 +552,7 @@ struct cfs_rq { #ifdef CONFIG_CFS_BANDWIDTH int runtime_enabled; + int expires_seq; u64 runtime_expires; s64 runtime_remaining; @@ -609,6 +611,11 @@ struct rt_rq { #endif }; +static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) +{ + return rt_rq->rt_queued && rt_rq->rt_nr_running; +} + /* Deadline class' related fields in a runqueue */ struct dl_rq { /* runqueue is an rbtree, ordered by deadline */ diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c index 05a831427bc7..56a0fed30c0a 100644 --- a/kernel/sched/topology.c +++ b/kernel/sched/topology.c @@ -47,7 +47,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); } - if (!cpumask_test_cpu(cpu, sched_group_span(group))) { + if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); } diff --git a/kernel/softirq.c b/kernel/softirq.c index de2f57fddc04..6f584861d329 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c @@ -79,12 +79,16 @@ static void wakeup_softirqd(void) /* * If ksoftirqd is scheduled, we do not want to process pending softirqs - * right now. Let ksoftirqd handle this at its own rate, to get fairness. + * right now. Let ksoftirqd handle this at its own rate, to get fairness, + * unless we're doing some of the synchronous softirqs. */ -static bool ksoftirqd_running(void) +#define SOFTIRQ_NOW_MASK ((1 << HI_SOFTIRQ) | (1 << TASKLET_SOFTIRQ)) +static bool ksoftirqd_running(unsigned long pending) { struct task_struct *tsk = __this_cpu_read(ksoftirqd); + if (pending & SOFTIRQ_NOW_MASK) + return false; return tsk && (tsk->state == TASK_RUNNING); } @@ -139,9 +143,13 @@ static void __local_bh_enable(unsigned int cnt) { lockdep_assert_irqs_disabled(); + if (preempt_count() == cnt) + trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); + if (softirq_count() == (cnt & SOFTIRQ_MASK)) trace_softirqs_on(_RET_IP_); - preempt_count_sub(cnt); + + __preempt_count_sub(cnt); } /* @@ -324,7 +332,7 @@ asmlinkage __visible void do_softirq(void) pending = local_softirq_pending(); - if (pending && !ksoftirqd_running()) + if (pending && !ksoftirqd_running(pending)) do_softirq_own_stack(); local_irq_restore(flags); @@ -351,7 +359,7 @@ void irq_enter(void) static inline void invoke_softirq(void) { - if (ksoftirqd_running()) + if (ksoftirqd_running(local_softirq_pending())) return; if (!force_irqthreads) { @@ -382,7 +390,7 @@ static inline void tick_irq_exit(void) /* Make sure that timer wheel updates are propagated */ if ((idle_cpu(cpu) && !need_resched()) || tick_nohz_full_cpu(cpu)) { - if (!in_interrupt()) + if (!in_irq()) tick_nohz_irq_exit(); } #endif diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index f89014a2c238..e190d1ef3a23 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c @@ -260,6 +260,15 @@ retry: err = 0; __cpu_stop_queue_work(stopper1, work1, &wakeq); __cpu_stop_queue_work(stopper2, work2, &wakeq); + /* + * The waking up of stopper threads has to happen + * in the same scheduling context as the queueing. + * Otherwise, there is a possibility of one of the + * above stoppers being woken up by another CPU, + * and preempting us. This will cause us to n ot + * wake up the other stopper forever. + */ + preempt_disable(); unlock: raw_spin_unlock(&stopper2->lock); raw_spin_unlock_irq(&stopper1->lock); @@ -270,7 +279,10 @@ unlock: goto retry; } - wake_up_q(&wakeq); + if (!err) { + wake_up_q(&wakeq); + preempt_enable(); + } return err; } diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c index 055a4a728c00..3e93c54bd3a1 100644 --- a/kernel/time/hrtimer.c +++ b/kernel/time/hrtimer.c @@ -1659,7 +1659,7 @@ EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) { switch(restart->nanosleep.type) { -#ifdef CONFIG_COMPAT +#ifdef CONFIG_COMPAT_32BIT_TIME case TT_COMPAT: if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp)) return -EFAULT; diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c index 5a6251ac6f7a..9cdf54b04ca8 100644 --- a/kernel/time/posix-cpu-timers.c +++ b/kernel/time/posix-cpu-timers.c @@ -604,7 +604,6 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, /* * Disarm any old timer after extracting its expiry time. */ - lockdep_assert_irqs_disabled(); ret = 0; old_incr = timer->it.cpu.incr; @@ -1049,7 +1048,6 @@ static void posix_cpu_timer_rearm(struct k_itimer *timer) /* * Now re-arm for the new expiry time. */ - lockdep_assert_irqs_disabled(); arm_timer(timer); unlock: unlock_task_sighand(p, &flags); diff --git a/kernel/time/tick-common.c b/kernel/time/tick-common.c index b7005dd21ec1..14de3727b18e 100644 --- a/kernel/time/tick-common.c +++ b/kernel/time/tick-common.c @@ -277,8 +277,7 @@ static bool tick_check_preferred(struct clock_event_device *curdev, */ return !curdev || newdev->rating > curdev->rating || - (!cpumask_equal(curdev->cpumask, newdev->cpumask) && - !tick_check_percpu(curdev, newdev, smp_processor_id())); + !cpumask_equal(curdev->cpumask, newdev->cpumask); } /* diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c index da9455a6b42b..5b33e2f5c0ed 100644 --- a/kernel/time/tick-sched.c +++ b/kernel/time/tick-sched.c @@ -642,7 +642,7 @@ static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) static inline bool local_timer_softirq_pending(void) { - return local_softirq_pending() & TIMER_SOFTIRQ; + return local_softirq_pending() & BIT(TIMER_SOFTIRQ); } static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) diff --git a/kernel/time/time.c b/kernel/time/time.c index 6fa99213fc72..2b41e8e2d31d 100644 --- a/kernel/time/time.c +++ b/kernel/time/time.c @@ -28,6 +28,7 @@ */ #include <linux/export.h> +#include <linux/kernel.h> #include <linux/timex.h> #include <linux/capability.h> #include <linux/timekeeper_internal.h> @@ -314,9 +315,10 @@ unsigned int jiffies_to_msecs(const unsigned long j) return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); #else # if BITS_PER_LONG == 32 - return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32; + return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >> + HZ_TO_MSEC_SHR32; # else - return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN; + return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN); # endif #endif } diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index efed9c1cfb7e..caf9cbf35816 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c @@ -192,17 +192,6 @@ static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip, op->saved_func(ip, parent_ip, op, regs); } -/** - * clear_ftrace_function - reset the ftrace function - * - * This NULLs the ftrace function and in essence stops - * tracing. There may be lag - */ -void clear_ftrace_function(void) -{ - ftrace_trace_function = ftrace_stub; -} - static void ftrace_sync(struct work_struct *work) { /* @@ -6689,7 +6678,7 @@ void ftrace_kill(void) { ftrace_disabled = 1; ftrace_enabled = 0; - clear_ftrace_function(); + ftrace_trace_function = ftrace_stub; } /** diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c index 6a46af21765c..0b0b688ea166 100644 --- a/kernel/trace/ring_buffer.c +++ b/kernel/trace/ring_buffer.c @@ -3227,6 +3227,22 @@ int ring_buffer_record_is_on(struct ring_buffer *buffer) } /** + * ring_buffer_record_is_set_on - return true if the ring buffer is set writable + * @buffer: The ring buffer to see if write is set enabled + * + * Returns true if the ring buffer is set writable by ring_buffer_record_on(). + * Note that this does NOT mean it is in a writable state. + * + * It may return true when the ring buffer has been disabled by + * ring_buffer_record_disable(), as that is a temporary disabling of + * the ring buffer. + */ +int ring_buffer_record_is_set_on(struct ring_buffer *buffer) +{ + return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); +} + +/** * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer * @buffer: The ring buffer to stop writes to. * @cpu: The CPU buffer to stop diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index c9336e98ac59..823687997b01 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c @@ -1360,8 +1360,6 @@ __update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu) void update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu) { - struct ring_buffer *buf; - if (tr->stop_count) return; @@ -1375,9 +1373,13 @@ update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu) arch_spin_lock(&tr->max_lock); - buf = tr->trace_buffer.buffer; - tr->trace_buffer.buffer = tr->max_buffer.buffer; - tr->max_buffer.buffer = buf; + /* Inherit the recordable setting from trace_buffer */ + if (ring_buffer_record_is_set_on(tr->trace_buffer.buffer)) + ring_buffer_record_on(tr->max_buffer.buffer); + else + ring_buffer_record_off(tr->max_buffer.buffer); + + swap(tr->trace_buffer.buffer, tr->max_buffer.buffer); __update_max_tr(tr, tsk, cpu); arch_spin_unlock(&tr->max_lock); @@ -2957,6 +2959,7 @@ out_nobuffer: } EXPORT_SYMBOL_GPL(trace_vbprintk); +__printf(3, 0) static int __trace_array_vprintk(struct ring_buffer *buffer, unsigned long ip, const char *fmt, va_list args) @@ -3011,12 +3014,14 @@ out_nobuffer: return len; } +__printf(3, 0) int trace_array_vprintk(struct trace_array *tr, unsigned long ip, const char *fmt, va_list args) { return __trace_array_vprintk(tr->trace_buffer.buffer, ip, fmt, args); } +__printf(3, 0) int trace_array_printk(struct trace_array *tr, unsigned long ip, const char *fmt, ...) { @@ -3032,6 +3037,7 @@ int trace_array_printk(struct trace_array *tr, return ret; } +__printf(3, 4) int trace_array_printk_buf(struct ring_buffer *buffer, unsigned long ip, const char *fmt, ...) { @@ -3047,6 +3053,7 @@ int trace_array_printk_buf(struct ring_buffer *buffer, return ret; } +__printf(2, 0) int trace_vprintk(unsigned long ip, const char *fmt, va_list args) { return trace_array_vprintk(&global_trace, ip, fmt, args); @@ -3364,8 +3371,8 @@ static void print_func_help_header(struct trace_buffer *buf, struct seq_file *m, print_event_info(buf, m); - seq_printf(m, "# TASK-PID CPU# %s TIMESTAMP FUNCTION\n", tgid ? "TGID " : ""); - seq_printf(m, "# | | | %s | |\n", tgid ? " | " : ""); + seq_printf(m, "# TASK-PID %s CPU# TIMESTAMP FUNCTION\n", tgid ? "TGID " : ""); + seq_printf(m, "# | | %s | | |\n", tgid ? " | " : ""); } static void print_func_help_header_irq(struct trace_buffer *buf, struct seq_file *m, @@ -3385,9 +3392,9 @@ static void print_func_help_header_irq(struct trace_buffer *buf, struct seq_file tgid ? tgid_space : space); seq_printf(m, "# %s||| / delay\n", tgid ? tgid_space : space); - seq_printf(m, "# TASK-PID CPU#%s|||| TIMESTAMP FUNCTION\n", + seq_printf(m, "# TASK-PID %sCPU# |||| TIMESTAMP FUNCTION\n", tgid ? " TGID " : space); - seq_printf(m, "# | | | %s|||| | |\n", + seq_printf(m, "# | | %s | |||| | |\n", tgid ? " | " : space); } diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h index 630c5a24b2b2..f8f86231ad90 100644 --- a/kernel/trace/trace.h +++ b/kernel/trace/trace.h @@ -583,9 +583,7 @@ static __always_inline void trace_clear_recursion(int bit) static inline struct ring_buffer_iter * trace_buffer_iter(struct trace_iterator *iter, int cpu) { - if (iter->buffer_iter && iter->buffer_iter[cpu]) - return iter->buffer_iter[cpu]; - return NULL; + return iter->buffer_iter ? iter->buffer_iter[cpu] : NULL; } int tracer_init(struct tracer *t, struct trace_array *tr); diff --git a/kernel/trace/trace_events_filter.c b/kernel/trace/trace_events_filter.c index e1c818dbc0d7..893a206bcba4 100644 --- a/kernel/trace/trace_events_filter.c +++ b/kernel/trace/trace_events_filter.c @@ -78,7 +78,8 @@ static const char * ops[] = { OPS }; C(TOO_MANY_PREDS, "Too many terms in predicate expression"), \ C(INVALID_FILTER, "Meaningless filter expression"), \ C(IP_FIELD_ONLY, "Only 'ip' field is supported for function trace"), \ - C(INVALID_VALUE, "Invalid value (did you forget quotes)?"), + C(INVALID_VALUE, "Invalid value (did you forget quotes)?"), \ + C(NO_FILTER, "No filter found"), #undef C #define C(a, b) FILT_ERR_##a @@ -550,6 +551,13 @@ predicate_parse(const char *str, int nr_parens, int nr_preds, goto out_free; } + if (!N) { + /* No program? */ + ret = -EINVAL; + parse_error(pe, FILT_ERR_NO_FILTER, ptr - str); + goto out_free; + } + prog[N].pred = NULL; /* #13 */ prog[N].target = 1; /* TRUE */ prog[N+1].pred = NULL; @@ -1693,6 +1701,7 @@ static void create_filter_finish(struct filter_parse_error *pe) * @filter_str: filter string * @set_str: remember @filter_str and enable detailed error in filter * @filterp: out param for created filter (always updated on return) + * Must be a pointer that references a NULL pointer. * * Creates a filter for @call with @filter_str. If @set_str is %true, * @filter_str is copied and recorded in the new filter. @@ -1710,6 +1719,10 @@ static int create_filter(struct trace_event_call *call, struct filter_parse_error *pe = NULL; int err; + /* filterp must point to NULL */ + if (WARN_ON(*filterp)) + *filterp = NULL; + err = create_filter_start(filter_string, set_str, &pe, filterp); if (err) return err; diff --git a/kernel/trace/trace_events_hist.c b/kernel/trace/trace_events_hist.c index 046c716a6536..aae18af94c94 100644 --- a/kernel/trace/trace_events_hist.c +++ b/kernel/trace/trace_events_hist.c @@ -393,7 +393,7 @@ static void hist_err_event(char *str, char *system, char *event, char *var) else if (system) snprintf(err, MAX_FILTER_STR_VAL, "%s.%s", system, event); else - strncpy(err, var, MAX_FILTER_STR_VAL); + strscpy(err, var, MAX_FILTER_STR_VAL); hist_err(str, err); } diff --git a/kernel/trace/trace_events_trigger.c b/kernel/trace/trace_events_trigger.c index d18249683682..5dea177cef53 100644 --- a/kernel/trace/trace_events_trigger.c +++ b/kernel/trace/trace_events_trigger.c @@ -679,6 +679,8 @@ event_trigger_callback(struct event_command *cmd_ops, goto out_free; out_reg: + /* Up the trigger_data count to make sure reg doesn't free it on failure */ + event_trigger_init(trigger_ops, trigger_data); ret = cmd_ops->reg(glob, trigger_ops, trigger_data, file); /* * The above returns on success the # of functions enabled, @@ -686,11 +688,13 @@ event_trigger_callback(struct event_command *cmd_ops, * Consider no functions a failure too. */ if (!ret) { + cmd_ops->unreg(glob, trigger_ops, trigger_data, file); ret = -ENOENT; - goto out_free; - } else if (ret < 0) - goto out_free; - ret = 0; + } else if (ret > 0) + ret = 0; + + /* Down the counter of trigger_data or free it if not used anymore */ + event_trigger_free(trigger_ops, trigger_data); out: return ret; @@ -1416,6 +1420,9 @@ int event_enable_trigger_func(struct event_command *cmd_ops, goto out; } + /* Up the trigger_data count to make sure nothing frees it on failure */ + event_trigger_init(trigger_ops, trigger_data); + if (trigger) { number = strsep(&trigger, ":"); @@ -1466,6 +1473,7 @@ int event_enable_trigger_func(struct event_command *cmd_ops, goto out_disable; /* Just return zero, not the number of enabled functions */ ret = 0; + event_trigger_free(trigger_ops, trigger_data); out: return ret; @@ -1476,7 +1484,7 @@ int event_enable_trigger_func(struct event_command *cmd_ops, out_free: if (cmd_ops->set_filter) cmd_ops->set_filter(NULL, trigger_data, NULL); - kfree(trigger_data); + event_trigger_free(trigger_ops, trigger_data); kfree(enable_data); goto out; } diff --git a/kernel/trace/trace_functions_graph.c b/kernel/trace/trace_functions_graph.c index 23c0b0cb5fb9..169b3c44ee97 100644 --- a/kernel/trace/trace_functions_graph.c +++ b/kernel/trace/trace_functions_graph.c @@ -831,6 +831,7 @@ print_graph_entry_leaf(struct trace_iterator *iter, struct ftrace_graph_ret *graph_ret; struct ftrace_graph_ent *call; unsigned long long duration; + int cpu = iter->cpu; int i; graph_ret = &ret_entry->ret; @@ -839,7 +840,6 @@ print_graph_entry_leaf(struct trace_iterator *iter, if (data) { struct fgraph_cpu_data *cpu_data; - int cpu = iter->cpu; cpu_data = per_cpu_ptr(data->cpu_data, cpu); @@ -869,6 +869,9 @@ print_graph_entry_leaf(struct trace_iterator *iter, trace_seq_printf(s, "%ps();\n", (void *)call->func); + print_graph_irq(iter, graph_ret->func, TRACE_GRAPH_RET, + cpu, iter->ent->pid, flags); + return trace_handle_return(s); } diff --git a/kernel/trace/trace_kprobe.c b/kernel/trace/trace_kprobe.c index daa81571b22a..6b71860f3998 100644 --- a/kernel/trace/trace_kprobe.c +++ b/kernel/trace/trace_kprobe.c @@ -400,11 +400,10 @@ static struct trace_kprobe *find_trace_kprobe(const char *event, static int enable_trace_kprobe(struct trace_kprobe *tk, struct trace_event_file *file) { + struct event_file_link *link = NULL; int ret = 0; if (file) { - struct event_file_link *link; - link = kmalloc(sizeof(*link), GFP_KERNEL); if (!link) { ret = -ENOMEM; @@ -424,6 +423,18 @@ enable_trace_kprobe(struct trace_kprobe *tk, struct trace_event_file *file) else ret = enable_kprobe(&tk->rp.kp); } + + if (ret) { + if (file) { + /* Notice the if is true on not WARN() */ + if (!WARN_ON_ONCE(!link)) + list_del_rcu(&link->list); + kfree(link); + tk->tp.flags &= ~TP_FLAG_TRACE; + } else { + tk->tp.flags &= ~TP_FLAG_PROFILE; + } + } out: return ret; } @@ -1480,8 +1491,10 @@ create_local_trace_kprobe(char *func, void *addr, unsigned long offs, } ret = __register_trace_kprobe(tk); - if (ret < 0) + if (ret < 0) { + kfree(tk->tp.call.print_fmt); goto error; + } return &tk->tp.call; error: @@ -1501,6 +1514,8 @@ void destroy_local_trace_kprobe(struct trace_event_call *event_call) } __unregister_trace_kprobe(tk); + + kfree(tk->tp.call.print_fmt); free_trace_kprobe(tk); } #endif /* CONFIG_PERF_EVENTS */ diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c index 90db994ac900..1c8e30fda46a 100644 --- a/kernel/trace/trace_output.c +++ b/kernel/trace/trace_output.c @@ -594,8 +594,7 @@ int trace_print_context(struct trace_iterator *iter) trace_find_cmdline(entry->pid, comm); - trace_seq_printf(s, "%16s-%-5d [%03d] ", - comm, entry->pid, iter->cpu); + trace_seq_printf(s, "%16s-%-5d ", comm, entry->pid); if (tr->trace_flags & TRACE_ITER_RECORD_TGID) { unsigned int tgid = trace_find_tgid(entry->pid); @@ -606,6 +605,8 @@ int trace_print_context(struct trace_iterator *iter) trace_seq_printf(s, "(%5d) ", tgid); } + trace_seq_printf(s, "[%03d] ", iter->cpu); + if (tr->trace_flags & TRACE_ITER_IRQ_INFO) trace_print_lat_fmt(s, entry); |