diff options
Diffstat (limited to 'drivers/mtd/nand/raw/tegra_nand.c')
-rw-r--r-- | drivers/mtd/nand/raw/tegra_nand.c | 1246 |
1 files changed, 1246 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c new file mode 100644 index 000000000000..79da1efc88d1 --- /dev/null +++ b/drivers/mtd/nand/raw/tegra_nand.c @@ -0,0 +1,1246 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2018 Stefan Agner <stefan@agner.ch> + * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de> + * Copyright (C) 2012 Avionic Design GmbH + */ + +#include <linux/clk.h> +#include <linux/completion.h> +#include <linux/dma-mapping.h> +#include <linux/err.h> +#include <linux/gpio/consumer.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/reset.h> + +#define COMMAND 0x00 +#define COMMAND_GO BIT(31) +#define COMMAND_CLE BIT(30) +#define COMMAND_ALE BIT(29) +#define COMMAND_PIO BIT(28) +#define COMMAND_TX BIT(27) +#define COMMAND_RX BIT(26) +#define COMMAND_SEC_CMD BIT(25) +#define COMMAND_AFT_DAT BIT(24) +#define COMMAND_TRANS_SIZE(size) ((((size) - 1) & 0xf) << 20) +#define COMMAND_A_VALID BIT(19) +#define COMMAND_B_VALID BIT(18) +#define COMMAND_RD_STATUS_CHK BIT(17) +#define COMMAND_RBSY_CHK BIT(16) +#define COMMAND_CE(x) BIT(8 + ((x) & 0x7)) +#define COMMAND_CLE_SIZE(size) ((((size) - 1) & 0x3) << 4) +#define COMMAND_ALE_SIZE(size) ((((size) - 1) & 0xf) << 0) + +#define STATUS 0x04 + +#define ISR 0x08 +#define ISR_CORRFAIL_ERR BIT(24) +#define ISR_UND BIT(7) +#define ISR_OVR BIT(6) +#define ISR_CMD_DONE BIT(5) +#define ISR_ECC_ERR BIT(4) + +#define IER 0x0c +#define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16) +#define IER_UND BIT(7) +#define IER_OVR BIT(6) +#define IER_CMD_DONE BIT(5) +#define IER_ECC_ERR BIT(4) +#define IER_GIE BIT(0) + +#define CONFIG 0x10 +#define CONFIG_HW_ECC BIT(31) +#define CONFIG_ECC_SEL BIT(30) +#define CONFIG_ERR_COR BIT(29) +#define CONFIG_PIPE_EN BIT(28) +#define CONFIG_TVAL_4 (0 << 24) +#define CONFIG_TVAL_6 (1 << 24) +#define CONFIG_TVAL_8 (2 << 24) +#define CONFIG_SKIP_SPARE BIT(23) +#define CONFIG_BUS_WIDTH_16 BIT(21) +#define CONFIG_COM_BSY BIT(20) +#define CONFIG_PS_256 (0 << 16) +#define CONFIG_PS_512 (1 << 16) +#define CONFIG_PS_1024 (2 << 16) +#define CONFIG_PS_2048 (3 << 16) +#define CONFIG_PS_4096 (4 << 16) +#define CONFIG_SKIP_SPARE_SIZE_4 (0 << 14) +#define CONFIG_SKIP_SPARE_SIZE_8 (1 << 14) +#define CONFIG_SKIP_SPARE_SIZE_12 (2 << 14) +#define CONFIG_SKIP_SPARE_SIZE_16 (3 << 14) +#define CONFIG_TAG_BYTE_SIZE(x) ((x) & 0xff) + +#define TIMING_1 0x14 +#define TIMING_TRP_RESP(x) (((x) & 0xf) << 28) +#define TIMING_TWB(x) (((x) & 0xf) << 24) +#define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20) +#define TIMING_TWHR(x) (((x) & 0xf) << 16) +#define TIMING_TCS(x) (((x) & 0x3) << 14) +#define TIMING_TWH(x) (((x) & 0x3) << 12) +#define TIMING_TWP(x) (((x) & 0xf) << 8) +#define TIMING_TRH(x) (((x) & 0x3) << 4) +#define TIMING_TRP(x) (((x) & 0xf) << 0) + +#define RESP 0x18 + +#define TIMING_2 0x1c +#define TIMING_TADL(x) ((x) & 0xf) + +#define CMD_REG1 0x20 +#define CMD_REG2 0x24 +#define ADDR_REG1 0x28 +#define ADDR_REG2 0x2c + +#define DMA_MST_CTRL 0x30 +#define DMA_MST_CTRL_GO BIT(31) +#define DMA_MST_CTRL_IN (0 << 30) +#define DMA_MST_CTRL_OUT BIT(30) +#define DMA_MST_CTRL_PERF_EN BIT(29) +#define DMA_MST_CTRL_IE_DONE BIT(28) +#define DMA_MST_CTRL_REUSE BIT(27) +#define DMA_MST_CTRL_BURST_1 (2 << 24) +#define DMA_MST_CTRL_BURST_4 (3 << 24) +#define DMA_MST_CTRL_BURST_8 (4 << 24) +#define DMA_MST_CTRL_BURST_16 (5 << 24) +#define DMA_MST_CTRL_IS_DONE BIT(20) +#define DMA_MST_CTRL_EN_A BIT(2) +#define DMA_MST_CTRL_EN_B BIT(1) + +#define DMA_CFG_A 0x34 +#define DMA_CFG_B 0x38 + +#define FIFO_CTRL 0x3c +#define FIFO_CTRL_CLR_ALL BIT(3) + +#define DATA_PTR 0x40 +#define TAG_PTR 0x44 +#define ECC_PTR 0x48 + +#define DEC_STATUS 0x4c +#define DEC_STATUS_A_ECC_FAIL BIT(1) +#define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000 +#define DEC_STATUS_ERR_COUNT_SHIFT 16 + +#define HWSTATUS_CMD 0x50 +#define HWSTATUS_MASK 0x54 +#define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24) +#define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16) +#define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8) +#define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0) + +#define BCH_CONFIG 0xcc +#define BCH_ENABLE BIT(0) +#define BCH_TVAL_4 (0 << 4) +#define BCH_TVAL_8 (1 << 4) +#define BCH_TVAL_14 (2 << 4) +#define BCH_TVAL_16 (3 << 4) + +#define DEC_STAT_RESULT 0xd0 +#define DEC_STAT_BUF 0xd4 +#define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000 +#define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24 +#define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000 +#define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16 +#define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00 +#define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8 + +#define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off)) + +#define SKIP_SPARE_BYTES 4 +#define BITS_PER_STEP_RS 18 +#define BITS_PER_STEP_BCH 13 + +#define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE) +#define HWSTATUS_CMD_DEFAULT NAND_STATUS_READY +#define HWSTATUS_MASK_DEFAULT (HWSTATUS_RDSTATUS_MASK(1) | \ + HWSTATUS_RDSTATUS_VALUE(0) | \ + HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \ + HWSTATUS_RBSY_VALUE(NAND_STATUS_READY)) + +struct tegra_nand_controller { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + int irq; + struct clk *clk; + struct completion command_complete; + struct completion dma_complete; + bool last_read_error; + int cur_cs; + struct nand_chip *chip; +}; + +struct tegra_nand_chip { + struct nand_chip chip; + struct gpio_desc *wp_gpio; + struct mtd_oob_region ecc; + u32 config; + u32 config_ecc; + u32 bch_config; + int cs[1]; +}; + +static inline struct tegra_nand_controller * + to_tegra_ctrl(struct nand_controller *hw_ctrl) +{ + return container_of(hw_ctrl, struct tegra_nand_controller, controller); +} + +static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip) +{ + return container_of(chip, struct tegra_nand_chip, chip); +} + +static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength, + BITS_PER_BYTE); + + if (section > 0) + return -ERANGE; + + oobregion->offset = SKIP_SPARE_BYTES; + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); + + return 0; +} + +static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + return -ERANGE; +} + +static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = { + .ecc = tegra_nand_ooblayout_rs_ecc, + .free = tegra_nand_ooblayout_no_free, +}; + +static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength, + BITS_PER_BYTE); + + if (section > 0) + return -ERANGE; + + oobregion->offset = SKIP_SPARE_BYTES; + oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); + + return 0; +} + +static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = { + .ecc = tegra_nand_ooblayout_bch_ecc, + .free = tegra_nand_ooblayout_no_free, +}; + +static irqreturn_t tegra_nand_irq(int irq, void *data) +{ + struct tegra_nand_controller *ctrl = data; + u32 isr, dma; + + isr = readl_relaxed(ctrl->regs + ISR); + dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); + dev_dbg(ctrl->dev, "isr %08x\n", isr); + + if (!isr && !(dma & DMA_MST_CTRL_IS_DONE)) + return IRQ_NONE; + + /* + * The bit name is somewhat missleading: This is also set when + * HW ECC was successful. The data sheet states: + * Correctable OR Un-correctable errors occurred in the DMA transfer... + */ + if (isr & ISR_CORRFAIL_ERR) + ctrl->last_read_error = true; + + if (isr & ISR_CMD_DONE) + complete(&ctrl->command_complete); + + if (isr & ISR_UND) + dev_err(ctrl->dev, "FIFO underrun\n"); + + if (isr & ISR_OVR) + dev_err(ctrl->dev, "FIFO overrun\n"); + + /* handle DMA interrupts */ + if (dma & DMA_MST_CTRL_IS_DONE) { + writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); + complete(&ctrl->dma_complete); + } + + /* clear interrupts */ + writel_relaxed(isr, ctrl->regs + ISR); + + return IRQ_HANDLED; +} + +static const char * const tegra_nand_reg_names[] = { + "COMMAND", + "STATUS", + "ISR", + "IER", + "CONFIG", + "TIMING", + NULL, + "TIMING2", + "CMD_REG1", + "CMD_REG2", + "ADDR_REG1", + "ADDR_REG2", + "DMA_MST_CTRL", + "DMA_CFG_A", + "DMA_CFG_B", + "FIFO_CTRL", +}; + +static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl) +{ + u32 reg; + int i; + + dev_err(ctrl->dev, "Tegra NAND controller register dump\n"); + for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) { + const char *reg_name = tegra_nand_reg_names[i]; + + if (!reg_name) + continue; + + reg = readl_relaxed(ctrl->regs + (i * 4)); + dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg); + } +} + +static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl) +{ + u32 isr, dma; + + disable_irq(ctrl->irq); + + /* Abort current command/DMA operation */ + writel_relaxed(0, ctrl->regs + DMA_MST_CTRL); + writel_relaxed(0, ctrl->regs + COMMAND); + + /* clear interrupts */ + isr = readl_relaxed(ctrl->regs + ISR); + writel_relaxed(isr, ctrl->regs + ISR); + dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); + writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); + + reinit_completion(&ctrl->command_complete); + reinit_completion(&ctrl->dma_complete); + + enable_irq(ctrl->irq); +} + +static int tegra_nand_cmd(struct nand_chip *chip, + const struct nand_subop *subop) +{ + const struct nand_op_instr *instr; + const struct nand_op_instr *instr_data_in = NULL; + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + unsigned int op_id, size = 0, offset = 0; + bool first_cmd = true; + u32 reg, cmd = 0; + int ret; + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + unsigned int naddrs, i; + const u8 *addrs; + u32 addr1 = 0, addr2 = 0; + + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (first_cmd) { + cmd |= COMMAND_CLE; + writel_relaxed(instr->ctx.cmd.opcode, + ctrl->regs + CMD_REG1); + } else { + cmd |= COMMAND_SEC_CMD; + writel_relaxed(instr->ctx.cmd.opcode, + ctrl->regs + CMD_REG2); + } + first_cmd = false; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs); + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) + addr1 |= *addrs++ << (BITS_PER_BYTE * i); + naddrs -= i; + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) + addr2 |= *addrs++ << (BITS_PER_BYTE * i); + + writel_relaxed(addr1, ctrl->regs + ADDR_REG1); + writel_relaxed(addr2, ctrl->regs + ADDR_REG2); + break; + + case NAND_OP_DATA_IN_INSTR: + size = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + + cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | + COMMAND_RX | COMMAND_A_VALID; + + instr_data_in = instr; + break; + + case NAND_OP_DATA_OUT_INSTR: + size = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + + cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | + COMMAND_TX | COMMAND_A_VALID; + memcpy(®, instr->ctx.data.buf.out + offset, size); + + writel_relaxed(reg, ctrl->regs + RESP); + break; + + case NAND_OP_WAITRDY_INSTR: + cmd |= COMMAND_RBSY_CHK; + break; + } + } + + cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs); + writel_relaxed(cmd, ctrl->regs + COMMAND); + ret = wait_for_completion_timeout(&ctrl->command_complete, + msecs_to_jiffies(500)); + if (!ret) { + dev_err(ctrl->dev, "COMMAND timeout\n"); + tegra_nand_dump_reg(ctrl); + tegra_nand_controller_abort(ctrl); + return -ETIMEDOUT; + } + + if (instr_data_in) { + reg = readl_relaxed(ctrl->regs + RESP); + memcpy(instr_data_in->ctx.data.buf.in + offset, ®, size); + } + + return 0; +} + +static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)), + NAND_OP_PARSER_PATTERN(tegra_nand_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)), + ); + +static int tegra_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op, + check_only); +} + +static void tegra_nand_select_chip(struct mtd_info *mtd, int die_nr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct tegra_nand_chip *nand = to_tegra_chip(chip); + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + + WARN_ON(die_nr >= (int)ARRAY_SIZE(nand->cs)); + + if (die_nr < 0 || die_nr > 0) { + ctrl->cur_cs = -1; + return; + } + + ctrl->cur_cs = nand->cs[die_nr]; +} + +static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl, + struct nand_chip *chip, bool enable) +{ + struct tegra_nand_chip *nand = to_tegra_chip(chip); + + if (chip->ecc.algo == NAND_ECC_BCH && enable) + writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG); + else + writel_relaxed(0, ctrl->regs + BCH_CONFIG); + + if (enable) + writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG); + else + writel_relaxed(nand->config, ctrl->regs + CONFIG); +} + +static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip, + void *buf, void *oob_buf, int oob_len, int page, + bool read) +{ + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; + dma_addr_t dma_addr = 0, dma_addr_oob = 0; + u32 addr1, cmd, dma_ctrl; + int ret; + + if (read) { + writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1); + writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2); + } else { + writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1); + writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2); + } + cmd = COMMAND_CLE | COMMAND_SEC_CMD; + + /* Lower 16-bits are column, by default 0 */ + addr1 = page << 16; + + if (!buf) + addr1 |= mtd->writesize; + writel_relaxed(addr1, ctrl->regs + ADDR_REG1); + + if (chip->options & NAND_ROW_ADDR_3) { + writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2); + cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5); + } else { + cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4); + } + + if (buf) { + dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir); + ret = dma_mapping_error(ctrl->dev, dma_addr); + if (ret) { + dev_err(ctrl->dev, "dma mapping error\n"); + return -EINVAL; + } + + writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A); + writel_relaxed(dma_addr, ctrl->regs + DATA_PTR); + } + + if (oob_buf) { + dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize, + dir); + ret = dma_mapping_error(ctrl->dev, dma_addr_oob); + if (ret) { + dev_err(ctrl->dev, "dma mapping error\n"); + ret = -EINVAL; + goto err_unmap_dma_page; + } + + writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B); + writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR); + } + + dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN | + DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE | + DMA_MST_CTRL_BURST_16; + + if (buf) + dma_ctrl |= DMA_MST_CTRL_EN_A; + if (oob_buf) + dma_ctrl |= DMA_MST_CTRL_EN_B; + + if (read) + dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE; + else + dma_ctrl |= DMA_MST_CTRL_OUT; + + writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL); + + cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) | + COMMAND_CE(ctrl->cur_cs); + + if (buf) + cmd |= COMMAND_A_VALID; + if (oob_buf) + cmd |= COMMAND_B_VALID; + + if (read) + cmd |= COMMAND_RX; + else + cmd |= COMMAND_TX | COMMAND_AFT_DAT; + + writel_relaxed(cmd, ctrl->regs + COMMAND); + + ret = wait_for_completion_timeout(&ctrl->command_complete, + msecs_to_jiffies(500)); + if (!ret) { + dev_err(ctrl->dev, "COMMAND timeout\n"); + tegra_nand_dump_reg(ctrl); + tegra_nand_controller_abort(ctrl); + ret = -ETIMEDOUT; + goto err_unmap_dma; + } + + ret = wait_for_completion_timeout(&ctrl->dma_complete, + msecs_to_jiffies(500)); + if (!ret) { + dev_err(ctrl->dev, "DMA timeout\n"); + tegra_nand_dump_reg(ctrl); + tegra_nand_controller_abort(ctrl); + ret = -ETIMEDOUT; + goto err_unmap_dma; + } + ret = 0; + +err_unmap_dma: + if (oob_buf) + dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir); +err_unmap_dma_page: + if (buf) + dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir); + + return ret; +} + +static int tegra_nand_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + void *oob_buf = oob_required ? chip->oob_poi : NULL; + + return tegra_nand_page_xfer(mtd, chip, buf, oob_buf, + mtd->oobsize, page, true); +} + +static int tegra_nand_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + void *oob_buf = oob_required ? chip->oob_poi : NULL; + + return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, + mtd->oobsize, page, false); +} + +static int tegra_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, + mtd->oobsize, page, true); +} + +static int tegra_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, + mtd->oobsize, page, false); +} + +static int tegra_nand_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + struct tegra_nand_chip *nand = to_tegra_chip(chip); + void *oob_buf = oob_required ? chip->oob_poi : NULL; + u32 dec_stat, max_corr_cnt; + unsigned long fail_sec_flag; + int ret; + + tegra_nand_hw_ecc(ctrl, chip, true); + ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true); + tegra_nand_hw_ecc(ctrl, chip, false); + if (ret) + return ret; + + /* No correctable or un-correctable errors, page must have 0 bitflips */ + if (!ctrl->last_read_error) + return 0; + + /* + * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF + * which contains information for all ECC selections. + * + * Note that since we do not use Command Queues DEC_RESULT does not + * state the number of pages we can read from the DEC_STAT_BUF. But + * since CORRFAIL_ERR did occur during page read we do have a valid + * result in DEC_STAT_BUF. + */ + ctrl->last_read_error = false; + dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF); + + fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >> + DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT; + + max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >> + DEC_STAT_BUF_MAX_CORR_CNT_SHIFT; + + if (fail_sec_flag) { + int bit, max_bitflips = 0; + + /* + * Since we do not support subpage writes, a complete page + * is either written or not. We can take a shortcut here by + * checking wheather any of the sector has been successful + * read. If at least one sectors has been read successfully, + * the page must have been a written previously. It cannot + * be an erased page. + * + * E.g. controller might return fail_sec_flag with 0x4, which + * would mean only the third sector failed to correct. The + * page must have been written and the third sector is really + * not correctable anymore. + */ + if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) { + mtd->ecc_stats.failed += hweight8(fail_sec_flag); + return max_corr_cnt; + } + + /* + * All sectors failed to correct, but the ECC isn't smart + * enough to figure out if a page is really just erased. + * Read OOB data and check whether data/OOB is completely + * erased or if error correction just failed for all sub- + * pages. + */ + ret = tegra_nand_read_oob(mtd, chip, page); + if (ret < 0) + return ret; + + for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) { + u8 *data = buf + (chip->ecc.size * bit); + u8 *oob = chip->oob_poi + nand->ecc.offset + + (chip->ecc.bytes * bit); + + ret = nand_check_erased_ecc_chunk(data, chip->ecc.size, + oob, chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (ret < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += ret; + max_bitflips = max(ret, max_bitflips); + } + } + + return max_t(unsigned int, max_corr_cnt, max_bitflips); + } else { + int corr_sec_flag; + + corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >> + DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT; + + /* + * The value returned in the register is the maximum of + * bitflips encountered in any of the ECC regions. As there is + * no way to get the number of bitflips in a specific regions + * we are not able to deliver correct stats but instead + * overestimate the number of corrected bitflips by assuming + * that all regions where errors have been corrected + * encountered the maximum number of bitflips. + */ + mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag); + + return max_corr_cnt; + } +} + +static int tegra_nand_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + void *oob_buf = oob_required ? chip->oob_poi : NULL; + int ret; + + tegra_nand_hw_ecc(ctrl, chip, true); + ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, + 0, page, false); + tegra_nand_hw_ecc(ctrl, chip, false); + + return ret; +} + +static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl, + const struct nand_sdr_timings *timings) +{ + /* + * The period (and all other timings in this function) is in ps, + * so need to take care here to avoid integer overflows. + */ + unsigned int rate = clk_get_rate(ctrl->clk) / 1000000; + unsigned int period = DIV_ROUND_UP(1000000, rate); + u32 val, reg = 0; + + val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min, + timings->tRC_min), period); + reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3)); + + val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min), + max(timings->tALS_min, timings->tALH_min)), + period); + reg |= TIMING_TCS(OFFSET(val, 2)); + + val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000, + period); + reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1)); + + reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1)); + reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1)); + reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1)); + reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1)); + reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1)); + + writel_relaxed(reg, ctrl->regs + TIMING_1); + + val = DIV_ROUND_UP(timings->tADL_min, period); + reg = TIMING_TADL(OFFSET(val, 3)); + + writel_relaxed(reg, ctrl->regs + TIMING_2); +} + +static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + const struct nand_sdr_timings *timings; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return PTR_ERR(timings); + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + tegra_nand_setup_timing(ctrl, timings); + + return 0; +} + +static const int rs_strength_bootable[] = { 4 }; +static const int rs_strength[] = { 4, 6, 8 }; +static const int bch_strength_bootable[] = { 8, 16 }; +static const int bch_strength[] = { 4, 8, 14, 16 }; + +static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength, + int strength_len, int bits_per_step, + int oobsize) +{ + bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE; + int i; + + /* + * Loop through available strengths. Backwards in case we try to + * maximize the BCH strength. + */ + for (i = 0; i < strength_len; i++) { + int strength_sel, bytes_per_step, bytes_per_page; + + if (maximize) { + strength_sel = strength[strength_len - i - 1]; + } else { + strength_sel = strength[i]; + + if (strength_sel < chip->ecc_strength_ds) + continue; + } + + bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel, + BITS_PER_BYTE); + bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4); + + /* Check whether strength fits OOB */ + if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES)) + return strength_sel; + } + + return -EINVAL; +} + +static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize) +{ + const int *strength; + int strength_len, bits_per_step; + + switch (chip->ecc.algo) { + case NAND_ECC_RS: + bits_per_step = BITS_PER_STEP_RS; + if (chip->options & NAND_IS_BOOT_MEDIUM) { + strength = rs_strength_bootable; + strength_len = ARRAY_SIZE(rs_strength_bootable); + } else { + strength = rs_strength; + strength_len = ARRAY_SIZE(rs_strength); + } + break; + case NAND_ECC_BCH: + bits_per_step = BITS_PER_STEP_BCH; + if (chip->options & NAND_IS_BOOT_MEDIUM) { + strength = bch_strength_bootable; + strength_len = ARRAY_SIZE(bch_strength_bootable); + } else { + strength = bch_strength; + strength_len = ARRAY_SIZE(bch_strength); + } + break; + default: + return -EINVAL; + } + + return tegra_nand_get_strength(chip, strength, strength_len, + bits_per_step, oobsize); +} + +static int tegra_nand_attach_chip(struct nand_chip *chip) +{ + struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); + struct tegra_nand_chip *nand = to_tegra_chip(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int bits_per_step; + int ret; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.size = 512; + chip->ecc.steps = mtd->writesize / chip->ecc.size; + if (chip->ecc_step_ds != 512) { + dev_err(ctrl->dev, "Unsupported step size %d\n", + chip->ecc_step_ds); + return -EINVAL; + } + + chip->ecc.read_page = tegra_nand_read_page_hwecc; + chip->ecc.write_page = tegra_nand_write_page_hwecc; + chip->ecc.read_page_raw = tegra_nand_read_page_raw; + chip->ecc.write_page_raw = tegra_nand_write_page_raw; + chip->ecc.read_oob = tegra_nand_read_oob; + chip->ecc.write_oob = tegra_nand_write_oob; + + if (chip->options & NAND_BUSWIDTH_16) + nand->config |= CONFIG_BUS_WIDTH_16; + + if (chip->ecc.algo == NAND_ECC_UNKNOWN) { + if (mtd->writesize < 2048) + chip->ecc.algo = NAND_ECC_RS; + else + chip->ecc.algo = NAND_ECC_BCH; + } + + if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) { + dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n"); + return -EINVAL; + } + + if (!chip->ecc.strength) { + ret = tegra_nand_select_strength(chip, mtd->oobsize); + if (ret < 0) { + dev_err(ctrl->dev, + "No valid strength found, minimum %d\n", + chip->ecc_strength_ds); + return ret; + } + + chip->ecc.strength = ret; + } + + nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE | + CONFIG_SKIP_SPARE_SIZE_4; + + switch (chip->ecc.algo) { + case NAND_ECC_RS: + bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength; + mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops); + nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL | + CONFIG_ERR_COR; + switch (chip->ecc.strength) { + case 4: + nand->config_ecc |= CONFIG_TVAL_4; + break; + case 6: + nand->config_ecc |= CONFIG_TVAL_6; + break; + case 8: + nand->config_ecc |= CONFIG_TVAL_8; + break; + default: + dev_err(ctrl->dev, "ECC strength %d not supported\n", + chip->ecc.strength); + return -EINVAL; + } + break; + case NAND_ECC_BCH: + bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength; + mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops); + nand->bch_config = BCH_ENABLE; + switch (chip->ecc.strength) { + case 4: + nand->bch_config |= BCH_TVAL_4; + break; + case 8: + nand->bch_config |= BCH_TVAL_8; + break; + case 14: + nand->bch_config |= BCH_TVAL_14; + break; + case 16: + nand->bch_config |= BCH_TVAL_16; + break; + default: + dev_err(ctrl->dev, "ECC strength %d not supported\n", + chip->ecc.strength); + return -EINVAL; + } + break; + default: + dev_err(ctrl->dev, "ECC algorithm not supported\n"); + return -EINVAL; + } + + dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n", + chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS", + chip->ecc.strength); + + chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE); + + switch (mtd->writesize) { + case 256: + nand->config |= CONFIG_PS_256; + break; + case 512: + nand->config |= CONFIG_PS_512; + break; + case 1024: + nand->config |= CONFIG_PS_1024; + break; + case 2048: + nand->config |= CONFIG_PS_2048; + break; + case 4096: + nand->config |= CONFIG_PS_4096; + break; + default: + dev_err(ctrl->dev, "Unsupported writesize %d\n", + mtd->writesize); + return -ENODEV; + } + + /* Store complete configuration for HW ECC in config_ecc */ + nand->config_ecc |= nand->config; + + /* Non-HW ECC read/writes complete OOB */ + nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1); + writel_relaxed(nand->config, ctrl->regs + CONFIG); + + return 0; +} + +static const struct nand_controller_ops tegra_nand_controller_ops = { + .attach_chip = &tegra_nand_attach_chip, +}; + +static int tegra_nand_chips_init(struct device *dev, + struct tegra_nand_controller *ctrl) +{ + struct device_node *np = dev->of_node; + struct device_node *np_nand; + int nsels, nchips = of_get_child_count(np); + struct tegra_nand_chip *nand; + struct mtd_info *mtd; + struct nand_chip *chip; + int ret; + u32 cs; + + if (nchips != 1) { + dev_err(dev, "Currently only one NAND chip supported\n"); + return -EINVAL; + } + + np_nand = of_get_next_child(np, NULL); + + nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32)); + if (nsels != 1) { + dev_err(dev, "Missing/invalid reg property\n"); + return -EINVAL; + } + + /* Retrieve CS id, currently only single die NAND supported */ + ret = of_property_read_u32(np_nand, "reg", &cs); + if (ret) { + dev_err(dev, "could not retrieve reg property: %d\n", ret); + return ret; + } + + nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); + if (!nand) + return -ENOMEM; + + nand->cs[0] = cs; + + nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); + + if (IS_ERR(nand->wp_gpio)) { + ret = PTR_ERR(nand->wp_gpio); + dev_err(dev, "Failed to request WP GPIO: %d\n", ret); + return ret; + } + + chip = &nand->chip; + chip->controller = &ctrl->controller; + + mtd = nand_to_mtd(chip); + + mtd->dev.parent = dev; + mtd->owner = THIS_MODULE; + + nand_set_flash_node(chip, np_nand); + + if (!mtd->name) + mtd->name = "tegra_nand"; + + chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER; + chip->exec_op = tegra_nand_exec_op; + chip->select_chip = tegra_nand_select_chip; + chip->setup_data_interface = tegra_nand_setup_data_interface; + + ret = nand_scan(mtd, 1); + if (ret) + return ret; + + mtd_ooblayout_ecc(mtd, 0, &nand->ecc); + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "Failed to register mtd device: %d\n", ret); + nand_cleanup(chip); + return ret; + } + + ctrl->chip = chip; + + return 0; +} + +static int tegra_nand_probe(struct platform_device *pdev) +{ + struct reset_control *rst; + struct tegra_nand_controller *ctrl; + struct resource *res; + int err = 0; + + ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL); + if (!ctrl) + return -ENOMEM; + + ctrl->dev = &pdev->dev; + nand_controller_init(&ctrl->controller); + ctrl->controller.ops = &tegra_nand_controller_ops; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + ctrl->regs = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(ctrl->regs)) + return PTR_ERR(ctrl->regs); + + rst = devm_reset_control_get(&pdev->dev, "nand"); + if (IS_ERR(rst)) + return PTR_ERR(rst); + + ctrl->clk = devm_clk_get(&pdev->dev, "nand"); + if (IS_ERR(ctrl->clk)) + return PTR_ERR(ctrl->clk); + + err = clk_prepare_enable(ctrl->clk); + if (err) + return err; + + err = reset_control_reset(rst); + if (err) { + dev_err(ctrl->dev, "Failed to reset HW: %d\n", err); + goto err_disable_clk; + } + + writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD); + writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK); + writel_relaxed(INT_MASK, ctrl->regs + IER); + + init_completion(&ctrl->command_complete); + init_completion(&ctrl->dma_complete); + + ctrl->irq = platform_get_irq(pdev, 0); + err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0, + dev_name(&pdev->dev), ctrl); + if (err) { + dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err); + goto err_disable_clk; + } + + writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL); + + err = tegra_nand_chips_init(ctrl->dev, ctrl); + if (err) + goto err_disable_clk; + + platform_set_drvdata(pdev, ctrl); + + return 0; + +err_disable_clk: + clk_disable_unprepare(ctrl->clk); + return err; +} + +static int tegra_nand_remove(struct platform_device *pdev) +{ + struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev); + struct nand_chip *chip = ctrl->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = mtd_device_unregister(mtd); + if (ret) + return ret; + + nand_cleanup(chip); + + clk_disable_unprepare(ctrl->clk); + + return 0; +} + +static const struct of_device_id tegra_nand_of_match[] = { + { .compatible = "nvidia,tegra20-nand" }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, tegra_nand_of_match); + +static struct platform_driver tegra_nand_driver = { + .driver = { + .name = "tegra-nand", + .of_match_table = tegra_nand_of_match, + }, + .probe = tegra_nand_probe, + .remove = tegra_nand_remove, +}; +module_platform_driver(tegra_nand_driver); + +MODULE_DESCRIPTION("NVIDIA Tegra NAND driver"); +MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>"); +MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>"); +MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>"); +MODULE_LICENSE("GPL v2"); |