diff options
Diffstat (limited to 'arch/cris/arch-v32/mach-a3/arbiter.c')
-rw-r--r-- | arch/cris/arch-v32/mach-a3/arbiter.c | 635 |
1 files changed, 0 insertions, 635 deletions
diff --git a/arch/cris/arch-v32/mach-a3/arbiter.c b/arch/cris/arch-v32/mach-a3/arbiter.c deleted file mode 100644 index 076182cc65a3..000000000000 --- a/arch/cris/arch-v32/mach-a3/arbiter.c +++ /dev/null @@ -1,635 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * Memory arbiter functions. Allocates bandwidth through the - * arbiter and sets up arbiter breakpoints. - * - * The algorithm first assigns slots to the clients that has specified - * bandwidth (e.g. ethernet) and then the remaining slots are divided - * on all the active clients. - * - * Copyright (c) 2004-2007 Axis Communications AB. - * - * The artpec-3 has two arbiters. The memory hierarchy looks like this: - * - * - * CPU DMAs - * | | - * | | - * -------------- ------------------ - * | foo arbiter|----| Internal memory| - * -------------- ------------------ - * | - * -------------- - * | L2 cache | - * -------------- - * | - * h264 etc | - * | | - * | | - * -------------- - * | bar arbiter| - * -------------- - * | - * --------- - * | SDRAM | - * --------- - * - */ - -#include <hwregs/reg_map.h> -#include <hwregs/reg_rdwr.h> -#include <hwregs/marb_foo_defs.h> -#include <hwregs/marb_bar_defs.h> -#include <arbiter.h> -#include <hwregs/intr_vect.h> -#include <linux/interrupt.h> -#include <linux/irq.h> -#include <linux/signal.h> -#include <linux/errno.h> -#include <linux/spinlock.h> -#include <asm/io.h> -#include <asm/irq_regs.h> - -#define D(x) - -struct crisv32_watch_entry { - unsigned long instance; - watch_callback *cb; - unsigned long start; - unsigned long end; - int used; -}; - -#define NUMBER_OF_BP 4 -#define SDRAM_BANDWIDTH 400000000 -#define INTMEM_BANDWIDTH 400000000 -#define NBR_OF_SLOTS 64 -#define NBR_OF_REGIONS 2 -#define NBR_OF_CLIENTS 15 -#define ARBITERS 2 -#define UNASSIGNED 100 - -struct arbiter { - unsigned long instance; - int nbr_regions; - int nbr_clients; - int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS]; - int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS]; -}; - -static struct crisv32_watch_entry watches[ARBITERS][NUMBER_OF_BP] = -{ - { - {regi_marb_foo_bp0}, - {regi_marb_foo_bp1}, - {regi_marb_foo_bp2}, - {regi_marb_foo_bp3} - }, - { - {regi_marb_bar_bp0}, - {regi_marb_bar_bp1}, - {regi_marb_bar_bp2}, - {regi_marb_bar_bp3} - } -}; - -struct arbiter arbiters[ARBITERS] = -{ - { /* L2 cache arbiter */ - .instance = regi_marb_foo, - .nbr_regions = 2, - .nbr_clients = 15 - }, - { /* DDR2 arbiter */ - .instance = regi_marb_bar, - .nbr_regions = 1, - .nbr_clients = 9 - } -}; - -static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH}; - -DEFINE_SPINLOCK(arbiter_lock); - -static irqreturn_t -crisv32_foo_arbiter_irq(int irq, void *dev_id); -static irqreturn_t -crisv32_bar_arbiter_irq(int irq, void *dev_id); - -/* - * "I'm the arbiter, I know the score. - * From square one I'll be watching all 64." - * (memory arbiter slots, that is) - * - * Or in other words: - * Program the memory arbiter slots for "region" according to what's - * in requested_slots[] and active_clients[], while minimizing - * latency. A caller may pass a non-zero positive amount for - * "unused_slots", which must then be the unallocated, remaining - * number of slots, free to hand out to any client. - */ - -static void crisv32_arbiter_config(int arbiter, int region, int unused_slots) -{ - int slot; - int client; - int interval = 0; - - /* - * This vector corresponds to the hardware arbiter slots (see - * the hardware documentation for semantics). We initialize - * each slot with a suitable sentinel value outside the valid - * range {0 .. NBR_OF_CLIENTS - 1} and replace them with - * client indexes. Then it's fed to the hardware. - */ - s8 val[NBR_OF_SLOTS]; - - for (slot = 0; slot < NBR_OF_SLOTS; slot++) - val[slot] = -1; - - for (client = 0; client < arbiters[arbiter].nbr_clients; client++) { - int pos; - /* Allocate the requested non-zero number of slots, but - * also give clients with zero-requests one slot each - * while stocks last. We do the latter here, in client - * order. This makes sure zero-request clients are the - * first to get to any spare slots, else those slots - * could, when bandwidth is allocated close to the limit, - * all be allocated to low-index non-zero-request clients - * in the default-fill loop below. Another positive but - * secondary effect is a somewhat better spread of the - * zero-bandwidth clients in the vector, avoiding some of - * the latency that could otherwise be caused by the - * partitioning of non-zero-bandwidth clients at low - * indexes and zero-bandwidth clients at high - * indexes. (Note that this spreading can only affect the - * unallocated bandwidth.) All the above only matters for - * memory-intensive situations, of course. - */ - if (!arbiters[arbiter].requested_slots[region][client]) { - /* - * Skip inactive clients. Also skip zero-slot - * allocations in this pass when there are no known - * free slots. - */ - if (!arbiters[arbiter].active_clients[region][client] || - unused_slots <= 0) - continue; - - unused_slots--; - - /* Only allocate one slot for this client. */ - interval = NBR_OF_SLOTS; - } else - interval = NBR_OF_SLOTS / - arbiters[arbiter].requested_slots[region][client]; - - pos = 0; - while (pos < NBR_OF_SLOTS) { - if (val[pos] >= 0) - pos++; - else { - val[pos] = client; - pos += interval; - } - } - } - - client = 0; - for (slot = 0; slot < NBR_OF_SLOTS; slot++) { - /* - * Allocate remaining slots in round-robin - * client-number order for active clients. For this - * pass, we ignore requested bandwidth and previous - * allocations. - */ - if (val[slot] < 0) { - int first = client; - while (!arbiters[arbiter].active_clients[region][client]) { - client = (client + 1) % - arbiters[arbiter].nbr_clients; - if (client == first) - break; - } - val[slot] = client; - client = (client + 1) % arbiters[arbiter].nbr_clients; - } - if (arbiter == 0) { - if (region == EXT_REGION) - REG_WR_INT_VECT(marb_foo, regi_marb_foo, - rw_l2_slots, slot, val[slot]); - else if (region == INT_REGION) - REG_WR_INT_VECT(marb_foo, regi_marb_foo, - rw_intm_slots, slot, val[slot]); - } else { - REG_WR_INT_VECT(marb_bar, regi_marb_bar, - rw_ddr2_slots, slot, val[slot]); - } - } -} - -extern char _stext[], _etext[]; - -static void crisv32_arbiter_init(void) -{ - static int initialized; - - if (initialized) - return; - - initialized = 1; - - /* - * CPU caches are always set to active, but with zero - * bandwidth allocated. It should be ok to allocate zero - * bandwidth for the caches, because DMA for other channels - * will supposedly finish, once their programmed amount is - * done, and then the caches will get access according to the - * "fixed scheme" for unclaimed slots. Though, if for some - * use-case somewhere, there's a maximum CPU latency for - * e.g. some interrupt, we have to start allocating specific - * bandwidth for the CPU caches too. - */ - arbiters[0].active_clients[EXT_REGION][11] = 1; - arbiters[0].active_clients[EXT_REGION][12] = 1; - crisv32_arbiter_config(0, EXT_REGION, 0); - crisv32_arbiter_config(0, INT_REGION, 0); - crisv32_arbiter_config(1, EXT_REGION, 0); - - if (request_irq(MEMARB_FOO_INTR_VECT, crisv32_foo_arbiter_irq, - 0, "arbiter", NULL)) - printk(KERN_ERR "Couldn't allocate arbiter IRQ\n"); - - if (request_irq(MEMARB_BAR_INTR_VECT, crisv32_bar_arbiter_irq, - 0, "arbiter", NULL)) - printk(KERN_ERR "Couldn't allocate arbiter IRQ\n"); - -#ifndef CONFIG_ETRAX_KGDB - /* Global watch for writes to kernel text segment. */ - crisv32_arbiter_watch(virt_to_phys(_stext), _etext - _stext, - MARB_CLIENTS(arbiter_all_clients, arbiter_bar_all_clients), - arbiter_all_write, NULL); -#endif - - /* Set up max burst sizes by default */ - REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_rd_burst, 3); - REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_wr_burst, 3); - REG_WR_INT(marb_bar, regi_marb_bar, rw_ccd_burst, 3); - REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_wr_burst, 3); - REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_rd_burst, 3); - REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_rd_burst, 3); - REG_WR_INT(marb_bar, regi_marb_bar, rw_vout_burst, 3); - REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_fifo_burst, 3); - REG_WR_INT(marb_bar, regi_marb_bar, rw_l2cache_burst, 3); -} - -int crisv32_arbiter_allocate_bandwidth(int client, int region, - unsigned long bandwidth) -{ - int i; - int total_assigned = 0; - int total_clients = 0; - int req; - int arbiter = 0; - - crisv32_arbiter_init(); - - if (client & 0xffff0000) { - arbiter = 1; - client >>= 16; - } - - for (i = 0; i < arbiters[arbiter].nbr_clients; i++) { - total_assigned += arbiters[arbiter].requested_slots[region][i]; - total_clients += arbiters[arbiter].active_clients[region][i]; - } - - /* Avoid division by 0 for 0-bandwidth requests. */ - req = bandwidth == 0 - ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth); - - /* - * We make sure that there are enough slots only for non-zero - * requests. Requesting 0 bandwidth *may* allocate slots, - * though if all bandwidth is allocated, such a client won't - * get any and will have to rely on getting memory access - * according to the fixed scheme that's the default when one - * of the slot-allocated clients doesn't claim their slot. - */ - if (total_assigned + req > NBR_OF_SLOTS) - return -ENOMEM; - - arbiters[arbiter].active_clients[region][client] = 1; - arbiters[arbiter].requested_slots[region][client] = req; - crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned); - - /* Propagate allocation from foo to bar */ - if (arbiter == 0) - crisv32_arbiter_allocate_bandwidth(8 << 16, - EXT_REGION, bandwidth); - return 0; -} - -/* - * Main entry for bandwidth deallocation. - * - * Strictly speaking, for a somewhat constant set of clients where - * each client gets a constant bandwidth and is just enabled or - * disabled (somewhat dynamically), no action is necessary here to - * avoid starvation for non-zero-allocation clients, as the allocated - * slots will just be unused. However, handing out those unused slots - * to active clients avoids needless latency if the "fixed scheme" - * would give unclaimed slots to an eager low-index client. - */ - -void crisv32_arbiter_deallocate_bandwidth(int client, int region) -{ - int i; - int total_assigned = 0; - int arbiter = 0; - - if (client & 0xffff0000) - arbiter = 1; - - arbiters[arbiter].requested_slots[region][client] = 0; - arbiters[arbiter].active_clients[region][client] = 0; - - for (i = 0; i < arbiters[arbiter].nbr_clients; i++) - total_assigned += arbiters[arbiter].requested_slots[region][i]; - - crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned); -} - -int crisv32_arbiter_watch(unsigned long start, unsigned long size, - unsigned long clients, unsigned long accesses, - watch_callback *cb) -{ - int i; - int arbiter; - int used[2]; - int ret = 0; - - crisv32_arbiter_init(); - - if (start > 0x80000000) { - printk(KERN_ERR "Arbiter: %lX doesn't look like a " - "physical address", start); - return -EFAULT; - } - - spin_lock(&arbiter_lock); - - if (clients & 0xffff) - used[0] = 1; - if (clients & 0xffff0000) - used[1] = 1; - - for (arbiter = 0; arbiter < ARBITERS; arbiter++) { - if (!used[arbiter]) - continue; - - for (i = 0; i < NUMBER_OF_BP; i++) { - if (!watches[arbiter][i].used) { - unsigned intr_mask; - if (arbiter) - intr_mask = REG_RD_INT(marb_bar, - regi_marb_bar, rw_intr_mask); - else - intr_mask = REG_RD_INT(marb_foo, - regi_marb_foo, rw_intr_mask); - - watches[arbiter][i].used = 1; - watches[arbiter][i].start = start; - watches[arbiter][i].end = start + size; - watches[arbiter][i].cb = cb; - - ret |= (i + 1) << (arbiter + 8); - if (arbiter) { - REG_WR_INT(marb_bar_bp, - watches[arbiter][i].instance, - rw_first_addr, - watches[arbiter][i].start); - REG_WR_INT(marb_bar_bp, - watches[arbiter][i].instance, - rw_last_addr, - watches[arbiter][i].end); - REG_WR_INT(marb_bar_bp, - watches[arbiter][i].instance, - rw_op, accesses); - REG_WR_INT(marb_bar_bp, - watches[arbiter][i].instance, - rw_clients, - clients & 0xffff); - } else { - REG_WR_INT(marb_foo_bp, - watches[arbiter][i].instance, - rw_first_addr, - watches[arbiter][i].start); - REG_WR_INT(marb_foo_bp, - watches[arbiter][i].instance, - rw_last_addr, - watches[arbiter][i].end); - REG_WR_INT(marb_foo_bp, - watches[arbiter][i].instance, - rw_op, accesses); - REG_WR_INT(marb_foo_bp, - watches[arbiter][i].instance, - rw_clients, clients >> 16); - } - - if (i == 0) - intr_mask |= 1; - else if (i == 1) - intr_mask |= 2; - else if (i == 2) - intr_mask |= 4; - else if (i == 3) - intr_mask |= 8; - - if (arbiter) - REG_WR_INT(marb_bar, regi_marb_bar, - rw_intr_mask, intr_mask); - else - REG_WR_INT(marb_foo, regi_marb_foo, - rw_intr_mask, intr_mask); - - spin_unlock(&arbiter_lock); - - break; - } - } - } - spin_unlock(&arbiter_lock); - if (ret) - return ret; - else - return -ENOMEM; -} - -int crisv32_arbiter_unwatch(int id) -{ - int arbiter; - int intr_mask; - - crisv32_arbiter_init(); - - spin_lock(&arbiter_lock); - - for (arbiter = 0; arbiter < ARBITERS; arbiter++) { - int id2; - - if (arbiter) - intr_mask = REG_RD_INT(marb_bar, regi_marb_bar, - rw_intr_mask); - else - intr_mask = REG_RD_INT(marb_foo, regi_marb_foo, - rw_intr_mask); - - id2 = (id & (0xff << (arbiter + 8))) >> (arbiter + 8); - if (id2 == 0) - continue; - id2--; - if ((id2 >= NUMBER_OF_BP) || (!watches[arbiter][id2].used)) { - spin_unlock(&arbiter_lock); - return -EINVAL; - } - - memset(&watches[arbiter][id2], 0, - sizeof(struct crisv32_watch_entry)); - - if (id2 == 0) - intr_mask &= ~1; - else if (id2 == 1) - intr_mask &= ~2; - else if (id2 == 2) - intr_mask &= ~4; - else if (id2 == 3) - intr_mask &= ~8; - - if (arbiter) - REG_WR_INT(marb_bar, regi_marb_bar, rw_intr_mask, - intr_mask); - else - REG_WR_INT(marb_foo, regi_marb_foo, rw_intr_mask, - intr_mask); - } - - spin_unlock(&arbiter_lock); - return 0; -} - -extern void show_registers(struct pt_regs *regs); - - -static irqreturn_t -crisv32_foo_arbiter_irq(int irq, void *dev_id) -{ - reg_marb_foo_r_masked_intr masked_intr = - REG_RD(marb_foo, regi_marb_foo, r_masked_intr); - reg_marb_foo_bp_r_brk_clients r_clients; - reg_marb_foo_bp_r_brk_addr r_addr; - reg_marb_foo_bp_r_brk_op r_op; - reg_marb_foo_bp_r_brk_first_client r_first; - reg_marb_foo_bp_r_brk_size r_size; - reg_marb_foo_bp_rw_ack ack = {0}; - reg_marb_foo_rw_ack_intr ack_intr = { - .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1 - }; - struct crisv32_watch_entry *watch; - unsigned arbiter = (unsigned)dev_id; - - masked_intr = REG_RD(marb_foo, regi_marb_foo, r_masked_intr); - - if (masked_intr.bp0) - watch = &watches[arbiter][0]; - else if (masked_intr.bp1) - watch = &watches[arbiter][1]; - else if (masked_intr.bp2) - watch = &watches[arbiter][2]; - else if (masked_intr.bp3) - watch = &watches[arbiter][3]; - else - return IRQ_NONE; - - /* Retrieve all useful information and print it. */ - r_clients = REG_RD(marb_foo_bp, watch->instance, r_brk_clients); - r_addr = REG_RD(marb_foo_bp, watch->instance, r_brk_addr); - r_op = REG_RD(marb_foo_bp, watch->instance, r_brk_op); - r_first = REG_RD(marb_foo_bp, watch->instance, r_brk_first_client); - r_size = REG_RD(marb_foo_bp, watch->instance, r_brk_size); - - printk(KERN_DEBUG "Arbiter IRQ\n"); - printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n", - REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_clients, r_clients), - REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_addr, r_addr), - REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_op, r_op), - REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_first_client, r_first), - REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_size, r_size)); - - REG_WR(marb_foo_bp, watch->instance, rw_ack, ack); - REG_WR(marb_foo, regi_marb_foo, rw_ack_intr, ack_intr); - - printk(KERN_DEBUG "IRQ occurred at %X\n", (unsigned)get_irq_regs()); - - if (watch->cb) - watch->cb(); - - return IRQ_HANDLED; -} - -static irqreturn_t -crisv32_bar_arbiter_irq(int irq, void *dev_id) -{ - reg_marb_bar_r_masked_intr masked_intr = - REG_RD(marb_bar, regi_marb_bar, r_masked_intr); - reg_marb_bar_bp_r_brk_clients r_clients; - reg_marb_bar_bp_r_brk_addr r_addr; - reg_marb_bar_bp_r_brk_op r_op; - reg_marb_bar_bp_r_brk_first_client r_first; - reg_marb_bar_bp_r_brk_size r_size; - reg_marb_bar_bp_rw_ack ack = {0}; - reg_marb_bar_rw_ack_intr ack_intr = { - .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1 - }; - struct crisv32_watch_entry *watch; - unsigned arbiter = (unsigned)dev_id; - - masked_intr = REG_RD(marb_bar, regi_marb_bar, r_masked_intr); - - if (masked_intr.bp0) - watch = &watches[arbiter][0]; - else if (masked_intr.bp1) - watch = &watches[arbiter][1]; - else if (masked_intr.bp2) - watch = &watches[arbiter][2]; - else if (masked_intr.bp3) - watch = &watches[arbiter][3]; - else - return IRQ_NONE; - - /* Retrieve all useful information and print it. */ - r_clients = REG_RD(marb_bar_bp, watch->instance, r_brk_clients); - r_addr = REG_RD(marb_bar_bp, watch->instance, r_brk_addr); - r_op = REG_RD(marb_bar_bp, watch->instance, r_brk_op); - r_first = REG_RD(marb_bar_bp, watch->instance, r_brk_first_client); - r_size = REG_RD(marb_bar_bp, watch->instance, r_brk_size); - - printk(KERN_DEBUG "Arbiter IRQ\n"); - printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n", - REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_clients, r_clients), - REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_addr, r_addr), - REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_op, r_op), - REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_first_client, r_first), - REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_size, r_size)); - - REG_WR(marb_bar_bp, watch->instance, rw_ack, ack); - REG_WR(marb_bar, regi_marb_bar, rw_ack_intr, ack_intr); - - printk(KERN_DEBUG "IRQ occurred at %X\n", (unsigned)get_irq_regs()->erp); - - if (watch->cb) - watch->cb(); - - return IRQ_HANDLED; -} - |