diff options
Diffstat (limited to 'Documentation/power/runtime_pm.txt')
-rw-r--r-- | Documentation/power/runtime_pm.txt | 928 |
1 files changed, 0 insertions, 928 deletions
diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt deleted file mode 100644 index 937e33c46211..000000000000 --- a/Documentation/power/runtime_pm.txt +++ /dev/null @@ -1,928 +0,0 @@ -Runtime Power Management Framework for I/O Devices - -(C) 2009-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc. -(C) 2010 Alan Stern <stern@rowland.harvard.edu> -(C) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com> - -1. Introduction - -Support for runtime power management (runtime PM) of I/O devices is provided -at the power management core (PM core) level by means of: - -* The power management workqueue pm_wq in which bus types and device drivers can - put their PM-related work items. It is strongly recommended that pm_wq be - used for queuing all work items related to runtime PM, because this allows - them to be synchronized with system-wide power transitions (suspend to RAM, - hibernation and resume from system sleep states). pm_wq is declared in - include/linux/pm_runtime.h and defined in kernel/power/main.c. - -* A number of runtime PM fields in the 'power' member of 'struct device' (which - is of the type 'struct dev_pm_info', defined in include/linux/pm.h) that can - be used for synchronizing runtime PM operations with one another. - -* Three device runtime PM callbacks in 'struct dev_pm_ops' (defined in - include/linux/pm.h). - -* A set of helper functions defined in drivers/base/power/runtime.c that can be - used for carrying out runtime PM operations in such a way that the - synchronization between them is taken care of by the PM core. Bus types and - device drivers are encouraged to use these functions. - -The runtime PM callbacks present in 'struct dev_pm_ops', the device runtime PM -fields of 'struct dev_pm_info' and the core helper functions provided for -runtime PM are described below. - -2. Device Runtime PM Callbacks - -There are three device runtime PM callbacks defined in 'struct dev_pm_ops': - -struct dev_pm_ops { - ... - int (*runtime_suspend)(struct device *dev); - int (*runtime_resume)(struct device *dev); - int (*runtime_idle)(struct device *dev); - ... -}; - -The ->runtime_suspend(), ->runtime_resume() and ->runtime_idle() callbacks -are executed by the PM core for the device's subsystem that may be either of -the following: - - 1. PM domain of the device, if the device's PM domain object, dev->pm_domain, - is present. - - 2. Device type of the device, if both dev->type and dev->type->pm are present. - - 3. Device class of the device, if both dev->class and dev->class->pm are - present. - - 4. Bus type of the device, if both dev->bus and dev->bus->pm are present. - -If the subsystem chosen by applying the above rules doesn't provide the relevant -callback, the PM core will invoke the corresponding driver callback stored in -dev->driver->pm directly (if present). - -The PM core always checks which callback to use in the order given above, so the -priority order of callbacks from high to low is: PM domain, device type, class -and bus type. Moreover, the high-priority one will always take precedence over -a low-priority one. The PM domain, bus type, device type and class callbacks -are referred to as subsystem-level callbacks in what follows. - -By default, the callbacks are always invoked in process context with interrupts -enabled. However, the pm_runtime_irq_safe() helper function can be used to tell -the PM core that it is safe to run the ->runtime_suspend(), ->runtime_resume() -and ->runtime_idle() callbacks for the given device in atomic context with -interrupts disabled. This implies that the callback routines in question must -not block or sleep, but it also means that the synchronous helper functions -listed at the end of Section 4 may be used for that device within an interrupt -handler or generally in an atomic context. - -The subsystem-level suspend callback, if present, is _entirely_ _responsible_ -for handling the suspend of the device as appropriate, which may, but need not -include executing the device driver's own ->runtime_suspend() callback (from the -PM core's point of view it is not necessary to implement a ->runtime_suspend() -callback in a device driver as long as the subsystem-level suspend callback -knows what to do to handle the device). - - * Once the subsystem-level suspend callback (or the driver suspend callback, - if invoked directly) has completed successfully for the given device, the PM - core regards the device as suspended, which need not mean that it has been - put into a low power state. It is supposed to mean, however, that the - device will not process data and will not communicate with the CPU(s) and - RAM until the appropriate resume callback is executed for it. The runtime - PM status of a device after successful execution of the suspend callback is - 'suspended'. - - * If the suspend callback returns -EBUSY or -EAGAIN, the device's runtime PM - status remains 'active', which means that the device _must_ be fully - operational afterwards. - - * If the suspend callback returns an error code different from -EBUSY and - -EAGAIN, the PM core regards this as a fatal error and will refuse to run - the helper functions described in Section 4 for the device until its status - is directly set to either 'active', or 'suspended' (the PM core provides - special helper functions for this purpose). - -In particular, if the driver requires remote wakeup capability (i.e. hardware -mechanism allowing the device to request a change of its power state, such as -PCI PME) for proper functioning and device_can_wakeup() returns 'false' for the -device, then ->runtime_suspend() should return -EBUSY. On the other hand, if -device_can_wakeup() returns 'true' for the device and the device is put into a -low-power state during the execution of the suspend callback, it is expected -that remote wakeup will be enabled for the device. Generally, remote wakeup -should be enabled for all input devices put into low-power states at run time. - -The subsystem-level resume callback, if present, is _entirely_ _responsible_ for -handling the resume of the device as appropriate, which may, but need not -include executing the device driver's own ->runtime_resume() callback (from the -PM core's point of view it is not necessary to implement a ->runtime_resume() -callback in a device driver as long as the subsystem-level resume callback knows -what to do to handle the device). - - * Once the subsystem-level resume callback (or the driver resume callback, if - invoked directly) has completed successfully, the PM core regards the device - as fully operational, which means that the device _must_ be able to complete - I/O operations as needed. The runtime PM status of the device is then - 'active'. - - * If the resume callback returns an error code, the PM core regards this as a - fatal error and will refuse to run the helper functions described in Section - 4 for the device, until its status is directly set to either 'active', or - 'suspended' (by means of special helper functions provided by the PM core - for this purpose). - -The idle callback (a subsystem-level one, if present, or the driver one) is -executed by the PM core whenever the device appears to be idle, which is -indicated to the PM core by two counters, the device's usage counter and the -counter of 'active' children of the device. - - * If any of these counters is decreased using a helper function provided by - the PM core and it turns out to be equal to zero, the other counter is - checked. If that counter also is equal to zero, the PM core executes the - idle callback with the device as its argument. - -The action performed by the idle callback is totally dependent on the subsystem -(or driver) in question, but the expected and recommended action is to check -if the device can be suspended (i.e. if all of the conditions necessary for -suspending the device are satisfied) and to queue up a suspend request for the -device in that case. If there is no idle callback, or if the callback returns -0, then the PM core will attempt to carry out a runtime suspend of the device, -also respecting devices configured for autosuspend. In essence this means a -call to pm_runtime_autosuspend() (do note that drivers needs to update the -device last busy mark, pm_runtime_mark_last_busy(), to control the delay under -this circumstance). To prevent this (for example, if the callback routine has -started a delayed suspend), the routine must return a non-zero value. Negative -error return codes are ignored by the PM core. - -The helper functions provided by the PM core, described in Section 4, guarantee -that the following constraints are met with respect to runtime PM callbacks for -one device: - -(1) The callbacks are mutually exclusive (e.g. it is forbidden to execute - ->runtime_suspend() in parallel with ->runtime_resume() or with another - instance of ->runtime_suspend() for the same device) with the exception that - ->runtime_suspend() or ->runtime_resume() can be executed in parallel with - ->runtime_idle() (although ->runtime_idle() will not be started while any - of the other callbacks is being executed for the same device). - -(2) ->runtime_idle() and ->runtime_suspend() can only be executed for 'active' - devices (i.e. the PM core will only execute ->runtime_idle() or - ->runtime_suspend() for the devices the runtime PM status of which is - 'active'). - -(3) ->runtime_idle() and ->runtime_suspend() can only be executed for a device - the usage counter of which is equal to zero _and_ either the counter of - 'active' children of which is equal to zero, or the 'power.ignore_children' - flag of which is set. - -(4) ->runtime_resume() can only be executed for 'suspended' devices (i.e. the - PM core will only execute ->runtime_resume() for the devices the runtime - PM status of which is 'suspended'). - -Additionally, the helper functions provided by the PM core obey the following -rules: - - * If ->runtime_suspend() is about to be executed or there's a pending request - to execute it, ->runtime_idle() will not be executed for the same device. - - * A request to execute or to schedule the execution of ->runtime_suspend() - will cancel any pending requests to execute ->runtime_idle() for the same - device. - - * If ->runtime_resume() is about to be executed or there's a pending request - to execute it, the other callbacks will not be executed for the same device. - - * A request to execute ->runtime_resume() will cancel any pending or - scheduled requests to execute the other callbacks for the same device, - except for scheduled autosuspends. - -3. Runtime PM Device Fields - -The following device runtime PM fields are present in 'struct dev_pm_info', as -defined in include/linux/pm.h: - - struct timer_list suspend_timer; - - timer used for scheduling (delayed) suspend and autosuspend requests - - unsigned long timer_expires; - - timer expiration time, in jiffies (if this is different from zero, the - timer is running and will expire at that time, otherwise the timer is not - running) - - struct work_struct work; - - work structure used for queuing up requests (i.e. work items in pm_wq) - - wait_queue_head_t wait_queue; - - wait queue used if any of the helper functions needs to wait for another - one to complete - - spinlock_t lock; - - lock used for synchronization - - atomic_t usage_count; - - the usage counter of the device - - atomic_t child_count; - - the count of 'active' children of the device - - unsigned int ignore_children; - - if set, the value of child_count is ignored (but still updated) - - unsigned int disable_depth; - - used for disabling the helper functions (they work normally if this is - equal to zero); the initial value of it is 1 (i.e. runtime PM is - initially disabled for all devices) - - int runtime_error; - - if set, there was a fatal error (one of the callbacks returned error code - as described in Section 2), so the helper functions will not work until - this flag is cleared; this is the error code returned by the failing - callback - - unsigned int idle_notification; - - if set, ->runtime_idle() is being executed - - unsigned int request_pending; - - if set, there's a pending request (i.e. a work item queued up into pm_wq) - - enum rpm_request request; - - type of request that's pending (valid if request_pending is set) - - unsigned int deferred_resume; - - set if ->runtime_resume() is about to be run while ->runtime_suspend() is - being executed for that device and it is not practical to wait for the - suspend to complete; means "start a resume as soon as you've suspended" - - enum rpm_status runtime_status; - - the runtime PM status of the device; this field's initial value is - RPM_SUSPENDED, which means that each device is initially regarded by the - PM core as 'suspended', regardless of its real hardware status - - unsigned int runtime_auto; - - if set, indicates that the user space has allowed the device driver to - power manage the device at run time via the /sys/devices/.../power/control - interface; it may only be modified with the help of the pm_runtime_allow() - and pm_runtime_forbid() helper functions - - unsigned int no_callbacks; - - indicates that the device does not use the runtime PM callbacks (see - Section 8); it may be modified only by the pm_runtime_no_callbacks() - helper function - - unsigned int irq_safe; - - indicates that the ->runtime_suspend() and ->runtime_resume() callbacks - will be invoked with the spinlock held and interrupts disabled - - unsigned int use_autosuspend; - - indicates that the device's driver supports delayed autosuspend (see - Section 9); it may be modified only by the - pm_runtime{_dont}_use_autosuspend() helper functions - - unsigned int timer_autosuspends; - - indicates that the PM core should attempt to carry out an autosuspend - when the timer expires rather than a normal suspend - - int autosuspend_delay; - - the delay time (in milliseconds) to be used for autosuspend - - unsigned long last_busy; - - the time (in jiffies) when the pm_runtime_mark_last_busy() helper - function was last called for this device; used in calculating inactivity - periods for autosuspend - -All of the above fields are members of the 'power' member of 'struct device'. - -4. Runtime PM Device Helper Functions - -The following runtime PM helper functions are defined in -drivers/base/power/runtime.c and include/linux/pm_runtime.h: - - void pm_runtime_init(struct device *dev); - - initialize the device runtime PM fields in 'struct dev_pm_info' - - void pm_runtime_remove(struct device *dev); - - make sure that the runtime PM of the device will be disabled after - removing the device from device hierarchy - - int pm_runtime_idle(struct device *dev); - - execute the subsystem-level idle callback for the device; returns an - error code on failure, where -EINPROGRESS means that ->runtime_idle() is - already being executed; if there is no callback or the callback returns 0 - then run pm_runtime_autosuspend(dev) and return its result - - int pm_runtime_suspend(struct device *dev); - - execute the subsystem-level suspend callback for the device; returns 0 on - success, 1 if the device's runtime PM status was already 'suspended', or - error code on failure, where -EAGAIN or -EBUSY means it is safe to attempt - to suspend the device again in future and -EACCES means that - 'power.disable_depth' is different from 0 - - int pm_runtime_autosuspend(struct device *dev); - - same as pm_runtime_suspend() except that the autosuspend delay is taken - into account; if pm_runtime_autosuspend_expiration() says the delay has - not yet expired then an autosuspend is scheduled for the appropriate time - and 0 is returned - - int pm_runtime_resume(struct device *dev); - - execute the subsystem-level resume callback for the device; returns 0 on - success, 1 if the device's runtime PM status was already 'active' or - error code on failure, where -EAGAIN means it may be safe to attempt to - resume the device again in future, but 'power.runtime_error' should be - checked additionally, and -EACCES means that 'power.disable_depth' is - different from 0 - - int pm_request_idle(struct device *dev); - - submit a request to execute the subsystem-level idle callback for the - device (the request is represented by a work item in pm_wq); returns 0 on - success or error code if the request has not been queued up - - int pm_request_autosuspend(struct device *dev); - - schedule the execution of the subsystem-level suspend callback for the - device when the autosuspend delay has expired; if the delay has already - expired then the work item is queued up immediately - - int pm_schedule_suspend(struct device *dev, unsigned int delay); - - schedule the execution of the subsystem-level suspend callback for the - device in future, where 'delay' is the time to wait before queuing up a - suspend work item in pm_wq, in milliseconds (if 'delay' is zero, the work - item is queued up immediately); returns 0 on success, 1 if the device's PM - runtime status was already 'suspended', or error code if the request - hasn't been scheduled (or queued up if 'delay' is 0); if the execution of - ->runtime_suspend() is already scheduled and not yet expired, the new - value of 'delay' will be used as the time to wait - - int pm_request_resume(struct device *dev); - - submit a request to execute the subsystem-level resume callback for the - device (the request is represented by a work item in pm_wq); returns 0 on - success, 1 if the device's runtime PM status was already 'active', or - error code if the request hasn't been queued up - - void pm_runtime_get_noresume(struct device *dev); - - increment the device's usage counter - - int pm_runtime_get(struct device *dev); - - increment the device's usage counter, run pm_request_resume(dev) and - return its result - - int pm_runtime_get_sync(struct device *dev); - - increment the device's usage counter, run pm_runtime_resume(dev) and - return its result - - int pm_runtime_get_if_in_use(struct device *dev); - - return -EINVAL if 'power.disable_depth' is nonzero; otherwise, if the - runtime PM status is RPM_ACTIVE and the runtime PM usage counter is - nonzero, increment the counter and return 1; otherwise return 0 without - changing the counter - - void pm_runtime_put_noidle(struct device *dev); - - decrement the device's usage counter - - int pm_runtime_put(struct device *dev); - - decrement the device's usage counter; if the result is 0 then run - pm_request_idle(dev) and return its result - - int pm_runtime_put_autosuspend(struct device *dev); - - decrement the device's usage counter; if the result is 0 then run - pm_request_autosuspend(dev) and return its result - - int pm_runtime_put_sync(struct device *dev); - - decrement the device's usage counter; if the result is 0 then run - pm_runtime_idle(dev) and return its result - - int pm_runtime_put_sync_suspend(struct device *dev); - - decrement the device's usage counter; if the result is 0 then run - pm_runtime_suspend(dev) and return its result - - int pm_runtime_put_sync_autosuspend(struct device *dev); - - decrement the device's usage counter; if the result is 0 then run - pm_runtime_autosuspend(dev) and return its result - - void pm_runtime_enable(struct device *dev); - - decrement the device's 'power.disable_depth' field; if that field is equal - to zero, the runtime PM helper functions can execute subsystem-level - callbacks described in Section 2 for the device - - int pm_runtime_disable(struct device *dev); - - increment the device's 'power.disable_depth' field (if the value of that - field was previously zero, this prevents subsystem-level runtime PM - callbacks from being run for the device), make sure that all of the - pending runtime PM operations on the device are either completed or - canceled; returns 1 if there was a resume request pending and it was - necessary to execute the subsystem-level resume callback for the device - to satisfy that request, otherwise 0 is returned - - int pm_runtime_barrier(struct device *dev); - - check if there's a resume request pending for the device and resume it - (synchronously) in that case, cancel any other pending runtime PM requests - regarding it and wait for all runtime PM operations on it in progress to - complete; returns 1 if there was a resume request pending and it was - necessary to execute the subsystem-level resume callback for the device to - satisfy that request, otherwise 0 is returned - - void pm_suspend_ignore_children(struct device *dev, bool enable); - - set/unset the power.ignore_children flag of the device - - int pm_runtime_set_active(struct device *dev); - - clear the device's 'power.runtime_error' flag, set the device's runtime - PM status to 'active' and update its parent's counter of 'active' - children as appropriate (it is only valid to use this function if - 'power.runtime_error' is set or 'power.disable_depth' is greater than - zero); it will fail and return error code if the device has a parent - which is not active and the 'power.ignore_children' flag of which is unset - - void pm_runtime_set_suspended(struct device *dev); - - clear the device's 'power.runtime_error' flag, set the device's runtime - PM status to 'suspended' and update its parent's counter of 'active' - children as appropriate (it is only valid to use this function if - 'power.runtime_error' is set or 'power.disable_depth' is greater than - zero) - - bool pm_runtime_active(struct device *dev); - - return true if the device's runtime PM status is 'active' or its - 'power.disable_depth' field is not equal to zero, or false otherwise - - bool pm_runtime_suspended(struct device *dev); - - return true if the device's runtime PM status is 'suspended' and its - 'power.disable_depth' field is equal to zero, or false otherwise - - bool pm_runtime_status_suspended(struct device *dev); - - return true if the device's runtime PM status is 'suspended' - - void pm_runtime_allow(struct device *dev); - - set the power.runtime_auto flag for the device and decrease its usage - counter (used by the /sys/devices/.../power/control interface to - effectively allow the device to be power managed at run time) - - void pm_runtime_forbid(struct device *dev); - - unset the power.runtime_auto flag for the device and increase its usage - counter (used by the /sys/devices/.../power/control interface to - effectively prevent the device from being power managed at run time) - - void pm_runtime_no_callbacks(struct device *dev); - - set the power.no_callbacks flag for the device and remove the runtime - PM attributes from /sys/devices/.../power (or prevent them from being - added when the device is registered) - - void pm_runtime_irq_safe(struct device *dev); - - set the power.irq_safe flag for the device, causing the runtime-PM - callbacks to be invoked with interrupts off - - bool pm_runtime_is_irq_safe(struct device *dev); - - return true if power.irq_safe flag was set for the device, causing - the runtime-PM callbacks to be invoked with interrupts off - - void pm_runtime_mark_last_busy(struct device *dev); - - set the power.last_busy field to the current time - - void pm_runtime_use_autosuspend(struct device *dev); - - set the power.use_autosuspend flag, enabling autosuspend delays; call - pm_runtime_get_sync if the flag was previously cleared and - power.autosuspend_delay is negative - - void pm_runtime_dont_use_autosuspend(struct device *dev); - - clear the power.use_autosuspend flag, disabling autosuspend delays; - decrement the device's usage counter if the flag was previously set and - power.autosuspend_delay is negative; call pm_runtime_idle - - void pm_runtime_set_autosuspend_delay(struct device *dev, int delay); - - set the power.autosuspend_delay value to 'delay' (expressed in - milliseconds); if 'delay' is negative then runtime suspends are - prevented; if power.use_autosuspend is set, pm_runtime_get_sync may be - called or the device's usage counter may be decremented and - pm_runtime_idle called depending on if power.autosuspend_delay is - changed to or from a negative value; if power.use_autosuspend is clear, - pm_runtime_idle is called - - unsigned long pm_runtime_autosuspend_expiration(struct device *dev); - - calculate the time when the current autosuspend delay period will expire, - based on power.last_busy and power.autosuspend_delay; if the delay time - is 1000 ms or larger then the expiration time is rounded up to the - nearest second; returns 0 if the delay period has already expired or - power.use_autosuspend isn't set, otherwise returns the expiration time - in jiffies - -It is safe to execute the following helper functions from interrupt context: - -pm_request_idle() -pm_request_autosuspend() -pm_schedule_suspend() -pm_request_resume() -pm_runtime_get_noresume() -pm_runtime_get() -pm_runtime_put_noidle() -pm_runtime_put() -pm_runtime_put_autosuspend() -pm_runtime_enable() -pm_suspend_ignore_children() -pm_runtime_set_active() -pm_runtime_set_suspended() -pm_runtime_suspended() -pm_runtime_mark_last_busy() -pm_runtime_autosuspend_expiration() - -If pm_runtime_irq_safe() has been called for a device then the following helper -functions may also be used in interrupt context: - -pm_runtime_idle() -pm_runtime_suspend() -pm_runtime_autosuspend() -pm_runtime_resume() -pm_runtime_get_sync() -pm_runtime_put_sync() -pm_runtime_put_sync_suspend() -pm_runtime_put_sync_autosuspend() - -5. Runtime PM Initialization, Device Probing and Removal - -Initially, the runtime PM is disabled for all devices, which means that the -majority of the runtime PM helper functions described in Section 4 will return --EAGAIN until pm_runtime_enable() is called for the device. - -In addition to that, the initial runtime PM status of all devices is -'suspended', but it need not reflect the actual physical state of the device. -Thus, if the device is initially active (i.e. it is able to process I/O), its -runtime PM status must be changed to 'active', with the help of -pm_runtime_set_active(), before pm_runtime_enable() is called for the device. - -However, if the device has a parent and the parent's runtime PM is enabled, -calling pm_runtime_set_active() for the device will affect the parent, unless -the parent's 'power.ignore_children' flag is set. Namely, in that case the -parent won't be able to suspend at run time, using the PM core's helper -functions, as long as the child's status is 'active', even if the child's -runtime PM is still disabled (i.e. pm_runtime_enable() hasn't been called for -the child yet or pm_runtime_disable() has been called for it). For this reason, -once pm_runtime_set_active() has been called for the device, pm_runtime_enable() -should be called for it too as soon as reasonably possible or its runtime PM -status should be changed back to 'suspended' with the help of -pm_runtime_set_suspended(). - -If the default initial runtime PM status of the device (i.e. 'suspended') -reflects the actual state of the device, its bus type's or its driver's -->probe() callback will likely need to wake it up using one of the PM core's -helper functions described in Section 4. In that case, pm_runtime_resume() -should be used. Of course, for this purpose the device's runtime PM has to be -enabled earlier by calling pm_runtime_enable(). - -Note, if the device may execute pm_runtime calls during the probe (such as -if it is registers with a subsystem that may call back in) then the -pm_runtime_get_sync() call paired with a pm_runtime_put() call will be -appropriate to ensure that the device is not put back to sleep during the -probe. This can happen with systems such as the network device layer. - -It may be desirable to suspend the device once ->probe() has finished. -Therefore the driver core uses the asynchronous pm_request_idle() to submit a -request to execute the subsystem-level idle callback for the device at that -time. A driver that makes use of the runtime autosuspend feature, may want to -update the last busy mark before returning from ->probe(). - -Moreover, the driver core prevents runtime PM callbacks from racing with the bus -notifier callback in __device_release_driver(), which is necessary, because the -notifier is used by some subsystems to carry out operations affecting the -runtime PM functionality. It does so by calling pm_runtime_get_sync() before -driver_sysfs_remove() and the BUS_NOTIFY_UNBIND_DRIVER notifications. This -resumes the device if it's in the suspended state and prevents it from -being suspended again while those routines are being executed. - -To allow bus types and drivers to put devices into the suspended state by -calling pm_runtime_suspend() from their ->remove() routines, the driver core -executes pm_runtime_put_sync() after running the BUS_NOTIFY_UNBIND_DRIVER -notifications in __device_release_driver(). This requires bus types and -drivers to make their ->remove() callbacks avoid races with runtime PM directly, -but also it allows of more flexibility in the handling of devices during the -removal of their drivers. - -Drivers in ->remove() callback should undo the runtime PM changes done -in ->probe(). Usually this means calling pm_runtime_disable(), -pm_runtime_dont_use_autosuspend() etc. - -The user space can effectively disallow the driver of the device to power manage -it at run time by changing the value of its /sys/devices/.../power/control -attribute to "on", which causes pm_runtime_forbid() to be called. In principle, -this mechanism may also be used by the driver to effectively turn off the -runtime power management of the device until the user space turns it on. -Namely, during the initialization the driver can make sure that the runtime PM -status of the device is 'active' and call pm_runtime_forbid(). It should be -noted, however, that if the user space has already intentionally changed the -value of /sys/devices/.../power/control to "auto" to allow the driver to power -manage the device at run time, the driver may confuse it by using -pm_runtime_forbid() this way. - -6. Runtime PM and System Sleep - -Runtime PM and system sleep (i.e., system suspend and hibernation, also known -as suspend-to-RAM and suspend-to-disk) interact with each other in a couple of -ways. If a device is active when a system sleep starts, everything is -straightforward. But what should happen if the device is already suspended? - -The device may have different wake-up settings for runtime PM and system sleep. -For example, remote wake-up may be enabled for runtime suspend but disallowed -for system sleep (device_may_wakeup(dev) returns 'false'). When this happens, -the subsystem-level system suspend callback is responsible for changing the -device's wake-up setting (it may leave that to the device driver's system -suspend routine). It may be necessary to resume the device and suspend it again -in order to do so. The same is true if the driver uses different power levels -or other settings for runtime suspend and system sleep. - -During system resume, the simplest approach is to bring all devices back to full -power, even if they had been suspended before the system suspend began. There -are several reasons for this, including: - - * The device might need to switch power levels, wake-up settings, etc. - - * Remote wake-up events might have been lost by the firmware. - - * The device's children may need the device to be at full power in order - to resume themselves. - - * The driver's idea of the device state may not agree with the device's - physical state. This can happen during resume from hibernation. - - * The device might need to be reset. - - * Even though the device was suspended, if its usage counter was > 0 then most - likely it would need a runtime resume in the near future anyway. - -If the device had been suspended before the system suspend began and it's -brought back to full power during resume, then its runtime PM status will have -to be updated to reflect the actual post-system sleep status. The way to do -this is: - - pm_runtime_disable(dev); - pm_runtime_set_active(dev); - pm_runtime_enable(dev); - -The PM core always increments the runtime usage counter before calling the -->suspend() callback and decrements it after calling the ->resume() callback. -Hence disabling runtime PM temporarily like this will not cause any runtime -suspend attempts to be permanently lost. If the usage count goes to zero -following the return of the ->resume() callback, the ->runtime_idle() callback -will be invoked as usual. - -On some systems, however, system sleep is not entered through a global firmware -or hardware operation. Instead, all hardware components are put into low-power -states directly by the kernel in a coordinated way. Then, the system sleep -state effectively follows from the states the hardware components end up in -and the system is woken up from that state by a hardware interrupt or a similar -mechanism entirely under the kernel's control. As a result, the kernel never -gives control away and the states of all devices during resume are precisely -known to it. If that is the case and none of the situations listed above takes -place (in particular, if the system is not waking up from hibernation), it may -be more efficient to leave the devices that had been suspended before the system -suspend began in the suspended state. - -To this end, the PM core provides a mechanism allowing some coordination between -different levels of device hierarchy. Namely, if a system suspend .prepare() -callback returns a positive number for a device, that indicates to the PM core -that the device appears to be runtime-suspended and its state is fine, so it -may be left in runtime suspend provided that all of its descendants are also -left in runtime suspend. If that happens, the PM core will not execute any -system suspend and resume callbacks for all of those devices, except for the -complete callback, which is then entirely responsible for handling the device -as appropriate. This only applies to system suspend transitions that are not -related to hibernation (see Documentation/driver-api/pm/devices.rst for more -information). - -The PM core does its best to reduce the probability of race conditions between -the runtime PM and system suspend/resume (and hibernation) callbacks by carrying -out the following operations: - - * During system suspend pm_runtime_get_noresume() is called for every device - right before executing the subsystem-level .prepare() callback for it and - pm_runtime_barrier() is called for every device right before executing the - subsystem-level .suspend() callback for it. In addition to that the PM core - calls __pm_runtime_disable() with 'false' as the second argument for every - device right before executing the subsystem-level .suspend_late() callback - for it. - - * During system resume pm_runtime_enable() and pm_runtime_put() are called for - every device right after executing the subsystem-level .resume_early() - callback and right after executing the subsystem-level .complete() callback - for it, respectively. - -7. Generic subsystem callbacks - -Subsystems may wish to conserve code space by using the set of generic power -management callbacks provided by the PM core, defined in -driver/base/power/generic_ops.c: - - int pm_generic_runtime_suspend(struct device *dev); - - invoke the ->runtime_suspend() callback provided by the driver of this - device and return its result, or return 0 if not defined - - int pm_generic_runtime_resume(struct device *dev); - - invoke the ->runtime_resume() callback provided by the driver of this - device and return its result, or return 0 if not defined - - int pm_generic_suspend(struct device *dev); - - if the device has not been suspended at run time, invoke the ->suspend() - callback provided by its driver and return its result, or return 0 if not - defined - - int pm_generic_suspend_noirq(struct device *dev); - - if pm_runtime_suspended(dev) returns "false", invoke the ->suspend_noirq() - callback provided by the device's driver and return its result, or return - 0 if not defined - - int pm_generic_resume(struct device *dev); - - invoke the ->resume() callback provided by the driver of this device and, - if successful, change the device's runtime PM status to 'active' - - int pm_generic_resume_noirq(struct device *dev); - - invoke the ->resume_noirq() callback provided by the driver of this device - - int pm_generic_freeze(struct device *dev); - - if the device has not been suspended at run time, invoke the ->freeze() - callback provided by its driver and return its result, or return 0 if not - defined - - int pm_generic_freeze_noirq(struct device *dev); - - if pm_runtime_suspended(dev) returns "false", invoke the ->freeze_noirq() - callback provided by the device's driver and return its result, or return - 0 if not defined - - int pm_generic_thaw(struct device *dev); - - if the device has not been suspended at run time, invoke the ->thaw() - callback provided by its driver and return its result, or return 0 if not - defined - - int pm_generic_thaw_noirq(struct device *dev); - - if pm_runtime_suspended(dev) returns "false", invoke the ->thaw_noirq() - callback provided by the device's driver and return its result, or return - 0 if not defined - - int pm_generic_poweroff(struct device *dev); - - if the device has not been suspended at run time, invoke the ->poweroff() - callback provided by its driver and return its result, or return 0 if not - defined - - int pm_generic_poweroff_noirq(struct device *dev); - - if pm_runtime_suspended(dev) returns "false", run the ->poweroff_noirq() - callback provided by the device's driver and return its result, or return - 0 if not defined - - int pm_generic_restore(struct device *dev); - - invoke the ->restore() callback provided by the driver of this device and, - if successful, change the device's runtime PM status to 'active' - - int pm_generic_restore_noirq(struct device *dev); - - invoke the ->restore_noirq() callback provided by the device's driver - -These functions are the defaults used by the PM core, if a subsystem doesn't -provide its own callbacks for ->runtime_idle(), ->runtime_suspend(), -->runtime_resume(), ->suspend(), ->suspend_noirq(), ->resume(), -->resume_noirq(), ->freeze(), ->freeze_noirq(), ->thaw(), ->thaw_noirq(), -->poweroff(), ->poweroff_noirq(), ->restore(), ->restore_noirq() in the -subsystem-level dev_pm_ops structure. - -Device drivers that wish to use the same function as a system suspend, freeze, -poweroff and runtime suspend callback, and similarly for system resume, thaw, -restore, and runtime resume, can achieve this with the help of the -UNIVERSAL_DEV_PM_OPS macro defined in include/linux/pm.h (possibly setting its -last argument to NULL). - -8. "No-Callback" Devices - -Some "devices" are only logical sub-devices of their parent and cannot be -power-managed on their own. (The prototype example is a USB interface. Entire -USB devices can go into low-power mode or send wake-up requests, but neither is -possible for individual interfaces.) The drivers for these devices have no -need of runtime PM callbacks; if the callbacks did exist, ->runtime_suspend() -and ->runtime_resume() would always return 0 without doing anything else and -->runtime_idle() would always call pm_runtime_suspend(). - -Subsystems can tell the PM core about these devices by calling -pm_runtime_no_callbacks(). This should be done after the device structure is -initialized and before it is registered (although after device registration is -also okay). The routine will set the device's power.no_callbacks flag and -prevent the non-debugging runtime PM sysfs attributes from being created. - -When power.no_callbacks is set, the PM core will not invoke the -->runtime_idle(), ->runtime_suspend(), or ->runtime_resume() callbacks. -Instead it will assume that suspends and resumes always succeed and that idle -devices should be suspended. - -As a consequence, the PM core will never directly inform the device's subsystem -or driver about runtime power changes. Instead, the driver for the device's -parent must take responsibility for telling the device's driver when the -parent's power state changes. - -9. Autosuspend, or automatically-delayed suspends - -Changing a device's power state isn't free; it requires both time and energy. -A device should be put in a low-power state only when there's some reason to -think it will remain in that state for a substantial time. A common heuristic -says that a device which hasn't been used for a while is liable to remain -unused; following this advice, drivers should not allow devices to be suspended -at runtime until they have been inactive for some minimum period. Even when -the heuristic ends up being non-optimal, it will still prevent devices from -"bouncing" too rapidly between low-power and full-power states. - -The term "autosuspend" is an historical remnant. It doesn't mean that the -device is automatically suspended (the subsystem or driver still has to call -the appropriate PM routines); rather it means that runtime suspends will -automatically be delayed until the desired period of inactivity has elapsed. - -Inactivity is determined based on the power.last_busy field. Drivers should -call pm_runtime_mark_last_busy() to update this field after carrying out I/O, -typically just before calling pm_runtime_put_autosuspend(). The desired length -of the inactivity period is a matter of policy. Subsystems can set this length -initially by calling pm_runtime_set_autosuspend_delay(), but after device -registration the length should be controlled by user space, using the -/sys/devices/.../power/autosuspend_delay_ms attribute. - -In order to use autosuspend, subsystems or drivers must call -pm_runtime_use_autosuspend() (preferably before registering the device), and -thereafter they should use the various *_autosuspend() helper functions instead -of the non-autosuspend counterparts: - - Instead of: pm_runtime_suspend use: pm_runtime_autosuspend; - Instead of: pm_schedule_suspend use: pm_request_autosuspend; - Instead of: pm_runtime_put use: pm_runtime_put_autosuspend; - Instead of: pm_runtime_put_sync use: pm_runtime_put_sync_autosuspend. - -Drivers may also continue to use the non-autosuspend helper functions; they -will behave normally, which means sometimes taking the autosuspend delay into -account (see pm_runtime_idle). - -Under some circumstances a driver or subsystem may want to prevent a device -from autosuspending immediately, even though the usage counter is zero and the -autosuspend delay time has expired. If the ->runtime_suspend() callback -returns -EAGAIN or -EBUSY, and if the next autosuspend delay expiration time is -in the future (as it normally would be if the callback invoked -pm_runtime_mark_last_busy()), the PM core will automatically reschedule the -autosuspend. The ->runtime_suspend() callback can't do this rescheduling -itself because no suspend requests of any kind are accepted while the device is -suspending (i.e., while the callback is running). - -The implementation is well suited for asynchronous use in interrupt contexts. -However such use inevitably involves races, because the PM core can't -synchronize ->runtime_suspend() callbacks with the arrival of I/O requests. -This synchronization must be handled by the driver, using its private lock. -Here is a schematic pseudo-code example: - - foo_read_or_write(struct foo_priv *foo, void *data) - { - lock(&foo->private_lock); - add_request_to_io_queue(foo, data); - if (foo->num_pending_requests++ == 0) - pm_runtime_get(&foo->dev); - if (!foo->is_suspended) - foo_process_next_request(foo); - unlock(&foo->private_lock); - } - - foo_io_completion(struct foo_priv *foo, void *req) - { - lock(&foo->private_lock); - if (--foo->num_pending_requests == 0) { - pm_runtime_mark_last_busy(&foo->dev); - pm_runtime_put_autosuspend(&foo->dev); - } else { - foo_process_next_request(foo); - } - unlock(&foo->private_lock); - /* Send req result back to the user ... */ - } - - int foo_runtime_suspend(struct device *dev) - { - struct foo_priv foo = container_of(dev, ...); - int ret = 0; - - lock(&foo->private_lock); - if (foo->num_pending_requests > 0) { - ret = -EBUSY; - } else { - /* ... suspend the device ... */ - foo->is_suspended = 1; - } - unlock(&foo->private_lock); - return ret; - } - - int foo_runtime_resume(struct device *dev) - { - struct foo_priv foo = container_of(dev, ...); - - lock(&foo->private_lock); - /* ... resume the device ... */ - foo->is_suspended = 0; - pm_runtime_mark_last_busy(&foo->dev); - if (foo->num_pending_requests > 0) - foo_process_next_request(foo); - unlock(&foo->private_lock); - return 0; - } - -The important point is that after foo_io_completion() asks for an autosuspend, -the foo_runtime_suspend() callback may race with foo_read_or_write(). -Therefore foo_runtime_suspend() has to check whether there are any pending I/O -requests (while holding the private lock) before allowing the suspend to -proceed. - -In addition, the power.autosuspend_delay field can be changed by user space at -any time. If a driver cares about this, it can call -pm_runtime_autosuspend_expiration() from within the ->runtime_suspend() -callback while holding its private lock. If the function returns a nonzero -value then the delay has not yet expired and the callback should return --EAGAIN. |