diff options
Diffstat (limited to 'Documentation/cgroup-v1/memory.txt')
-rw-r--r-- | Documentation/cgroup-v1/memory.txt | 891 |
1 files changed, 0 insertions, 891 deletions
diff --git a/Documentation/cgroup-v1/memory.txt b/Documentation/cgroup-v1/memory.txt deleted file mode 100644 index 3682e99234c2..000000000000 --- a/Documentation/cgroup-v1/memory.txt +++ /dev/null @@ -1,891 +0,0 @@ -Memory Resource Controller - -NOTE: This document is hopelessly outdated and it asks for a complete - rewrite. It still contains a useful information so we are keeping it - here but make sure to check the current code if you need a deeper - understanding. - -NOTE: The Memory Resource Controller has generically been referred to as the - memory controller in this document. Do not confuse memory controller - used here with the memory controller that is used in hardware. - -(For editors) -In this document: - When we mention a cgroup (cgroupfs's directory) with memory controller, - we call it "memory cgroup". When you see git-log and source code, you'll - see patch's title and function names tend to use "memcg". - In this document, we avoid using it. - -Benefits and Purpose of the memory controller - -The memory controller isolates the memory behaviour of a group of tasks -from the rest of the system. The article on LWN [12] mentions some probable -uses of the memory controller. The memory controller can be used to - -a. Isolate an application or a group of applications - Memory-hungry applications can be isolated and limited to a smaller - amount of memory. -b. Create a cgroup with a limited amount of memory; this can be used - as a good alternative to booting with mem=XXXX. -c. Virtualization solutions can control the amount of memory they want - to assign to a virtual machine instance. -d. A CD/DVD burner could control the amount of memory used by the - rest of the system to ensure that burning does not fail due to lack - of available memory. -e. There are several other use cases; find one or use the controller just - for fun (to learn and hack on the VM subsystem). - -Current Status: linux-2.6.34-mmotm(development version of 2010/April) - -Features: - - accounting anonymous pages, file caches, swap caches usage and limiting them. - - pages are linked to per-memcg LRU exclusively, and there is no global LRU. - - optionally, memory+swap usage can be accounted and limited. - - hierarchical accounting - - soft limit - - moving (recharging) account at moving a task is selectable. - - usage threshold notifier - - memory pressure notifier - - oom-killer disable knob and oom-notifier - - Root cgroup has no limit controls. - - Kernel memory support is a work in progress, and the current version provides - basically functionality. (See Section 2.7) - -Brief summary of control files. - - tasks # attach a task(thread) and show list of threads - cgroup.procs # show list of processes - cgroup.event_control # an interface for event_fd() - memory.usage_in_bytes # show current usage for memory - (See 5.5 for details) - memory.memsw.usage_in_bytes # show current usage for memory+Swap - (See 5.5 for details) - memory.limit_in_bytes # set/show limit of memory usage - memory.memsw.limit_in_bytes # set/show limit of memory+Swap usage - memory.failcnt # show the number of memory usage hits limits - memory.memsw.failcnt # show the number of memory+Swap hits limits - memory.max_usage_in_bytes # show max memory usage recorded - memory.memsw.max_usage_in_bytes # show max memory+Swap usage recorded - memory.soft_limit_in_bytes # set/show soft limit of memory usage - memory.stat # show various statistics - memory.use_hierarchy # set/show hierarchical account enabled - memory.force_empty # trigger forced move charge to parent - memory.pressure_level # set memory pressure notifications - memory.swappiness # set/show swappiness parameter of vmscan - (See sysctl's vm.swappiness) - memory.move_charge_at_immigrate # set/show controls of moving charges - memory.oom_control # set/show oom controls. - memory.numa_stat # show the number of memory usage per numa node - - memory.kmem.limit_in_bytes # set/show hard limit for kernel memory - memory.kmem.usage_in_bytes # show current kernel memory allocation - memory.kmem.failcnt # show the number of kernel memory usage hits limits - memory.kmem.max_usage_in_bytes # show max kernel memory usage recorded - - memory.kmem.tcp.limit_in_bytes # set/show hard limit for tcp buf memory - memory.kmem.tcp.usage_in_bytes # show current tcp buf memory allocation - memory.kmem.tcp.failcnt # show the number of tcp buf memory usage hits limits - memory.kmem.tcp.max_usage_in_bytes # show max tcp buf memory usage recorded - -1. History - -The memory controller has a long history. A request for comments for the memory -controller was posted by Balbir Singh [1]. At the time the RFC was posted -there were several implementations for memory control. The goal of the -RFC was to build consensus and agreement for the minimal features required -for memory control. The first RSS controller was posted by Balbir Singh[2] -in Feb 2007. Pavel Emelianov [3][4][5] has since posted three versions of the -RSS controller. At OLS, at the resource management BoF, everyone suggested -that we handle both page cache and RSS together. Another request was raised -to allow user space handling of OOM. The current memory controller is -at version 6; it combines both mapped (RSS) and unmapped Page -Cache Control [11]. - -2. Memory Control - -Memory is a unique resource in the sense that it is present in a limited -amount. If a task requires a lot of CPU processing, the task can spread -its processing over a period of hours, days, months or years, but with -memory, the same physical memory needs to be reused to accomplish the task. - -The memory controller implementation has been divided into phases. These -are: - -1. Memory controller -2. mlock(2) controller -3. Kernel user memory accounting and slab control -4. user mappings length controller - -The memory controller is the first controller developed. - -2.1. Design - -The core of the design is a counter called the page_counter. The -page_counter tracks the current memory usage and limit of the group of -processes associated with the controller. Each cgroup has a memory controller -specific data structure (mem_cgroup) associated with it. - -2.2. Accounting - - +--------------------+ - | mem_cgroup | - | (page_counter) | - +--------------------+ - / ^ \ - / | \ - +---------------+ | +---------------+ - | mm_struct | |.... | mm_struct | - | | | | | - +---------------+ | +---------------+ - | - + --------------+ - | - +---------------+ +------+--------+ - | page +----------> page_cgroup| - | | | | - +---------------+ +---------------+ - - (Figure 1: Hierarchy of Accounting) - - -Figure 1 shows the important aspects of the controller - -1. Accounting happens per cgroup -2. Each mm_struct knows about which cgroup it belongs to -3. Each page has a pointer to the page_cgroup, which in turn knows the - cgroup it belongs to - -The accounting is done as follows: mem_cgroup_charge_common() is invoked to -set up the necessary data structures and check if the cgroup that is being -charged is over its limit. If it is, then reclaim is invoked on the cgroup. -More details can be found in the reclaim section of this document. -If everything goes well, a page meta-data-structure called page_cgroup is -updated. page_cgroup has its own LRU on cgroup. -(*) page_cgroup structure is allocated at boot/memory-hotplug time. - -2.2.1 Accounting details - -All mapped anon pages (RSS) and cache pages (Page Cache) are accounted. -Some pages which are never reclaimable and will not be on the LRU -are not accounted. We just account pages under usual VM management. - -RSS pages are accounted at page_fault unless they've already been accounted -for earlier. A file page will be accounted for as Page Cache when it's -inserted into inode (radix-tree). While it's mapped into the page tables of -processes, duplicate accounting is carefully avoided. - -An RSS page is unaccounted when it's fully unmapped. A PageCache page is -unaccounted when it's removed from radix-tree. Even if RSS pages are fully -unmapped (by kswapd), they may exist as SwapCache in the system until they -are really freed. Such SwapCaches are also accounted. -A swapped-in page is not accounted until it's mapped. - -Note: The kernel does swapin-readahead and reads multiple swaps at once. -This means swapped-in pages may contain pages for other tasks than a task -causing page fault. So, we avoid accounting at swap-in I/O. - -At page migration, accounting information is kept. - -Note: we just account pages-on-LRU because our purpose is to control amount -of used pages; not-on-LRU pages tend to be out-of-control from VM view. - -2.3 Shared Page Accounting - -Shared pages are accounted on the basis of the first touch approach. The -cgroup that first touches a page is accounted for the page. The principle -behind this approach is that a cgroup that aggressively uses a shared -page will eventually get charged for it (once it is uncharged from -the cgroup that brought it in -- this will happen on memory pressure). - -But see section 8.2: when moving a task to another cgroup, its pages may -be recharged to the new cgroup, if move_charge_at_immigrate has been chosen. - -Exception: If CONFIG_MEMCG_SWAP is not used. -When you do swapoff and make swapped-out pages of shmem(tmpfs) to -be backed into memory in force, charges for pages are accounted against the -caller of swapoff rather than the users of shmem. - -2.4 Swap Extension (CONFIG_MEMCG_SWAP) - -Swap Extension allows you to record charge for swap. A swapped-in page is -charged back to original page allocator if possible. - -When swap is accounted, following files are added. - - memory.memsw.usage_in_bytes. - - memory.memsw.limit_in_bytes. - -memsw means memory+swap. Usage of memory+swap is limited by -memsw.limit_in_bytes. - -Example: Assume a system with 4G of swap. A task which allocates 6G of memory -(by mistake) under 2G memory limitation will use all swap. -In this case, setting memsw.limit_in_bytes=3G will prevent bad use of swap. -By using the memsw limit, you can avoid system OOM which can be caused by swap -shortage. - -* why 'memory+swap' rather than swap. -The global LRU(kswapd) can swap out arbitrary pages. Swap-out means -to move account from memory to swap...there is no change in usage of -memory+swap. In other words, when we want to limit the usage of swap without -affecting global LRU, memory+swap limit is better than just limiting swap from -an OS point of view. - -* What happens when a cgroup hits memory.memsw.limit_in_bytes -When a cgroup hits memory.memsw.limit_in_bytes, it's useless to do swap-out -in this cgroup. Then, swap-out will not be done by cgroup routine and file -caches are dropped. But as mentioned above, global LRU can do swapout memory -from it for sanity of the system's memory management state. You can't forbid -it by cgroup. - -2.5 Reclaim - -Each cgroup maintains a per cgroup LRU which has the same structure as -global VM. When a cgroup goes over its limit, we first try -to reclaim memory from the cgroup so as to make space for the new -pages that the cgroup has touched. If the reclaim is unsuccessful, -an OOM routine is invoked to select and kill the bulkiest task in the -cgroup. (See 10. OOM Control below.) - -The reclaim algorithm has not been modified for cgroups, except that -pages that are selected for reclaiming come from the per-cgroup LRU -list. - -NOTE: Reclaim does not work for the root cgroup, since we cannot set any -limits on the root cgroup. - -Note2: When panic_on_oom is set to "2", the whole system will panic. - -When oom event notifier is registered, event will be delivered. -(See oom_control section) - -2.6 Locking - - lock_page_cgroup()/unlock_page_cgroup() should not be called under - the i_pages lock. - - Other lock order is following: - PG_locked. - mm->page_table_lock - zone_lru_lock - lock_page_cgroup. - In many cases, just lock_page_cgroup() is called. - per-zone-per-cgroup LRU (cgroup's private LRU) is just guarded by - zone_lru_lock, it has no lock of its own. - -2.7 Kernel Memory Extension (CONFIG_MEMCG_KMEM) - -With the Kernel memory extension, the Memory Controller is able to limit -the amount of kernel memory used by the system. Kernel memory is fundamentally -different than user memory, since it can't be swapped out, which makes it -possible to DoS the system by consuming too much of this precious resource. - -Kernel memory accounting is enabled for all memory cgroups by default. But -it can be disabled system-wide by passing cgroup.memory=nokmem to the kernel -at boot time. In this case, kernel memory will not be accounted at all. - -Kernel memory limits are not imposed for the root cgroup. Usage for the root -cgroup may or may not be accounted. The memory used is accumulated into -memory.kmem.usage_in_bytes, or in a separate counter when it makes sense. -(currently only for tcp). -The main "kmem" counter is fed into the main counter, so kmem charges will -also be visible from the user counter. - -Currently no soft limit is implemented for kernel memory. It is future work -to trigger slab reclaim when those limits are reached. - -2.7.1 Current Kernel Memory resources accounted - -* stack pages: every process consumes some stack pages. By accounting into -kernel memory, we prevent new processes from being created when the kernel -memory usage is too high. - -* slab pages: pages allocated by the SLAB or SLUB allocator are tracked. A copy -of each kmem_cache is created every time the cache is touched by the first time -from inside the memcg. The creation is done lazily, so some objects can still be -skipped while the cache is being created. All objects in a slab page should -belong to the same memcg. This only fails to hold when a task is migrated to a -different memcg during the page allocation by the cache. - -* sockets memory pressure: some sockets protocols have memory pressure -thresholds. The Memory Controller allows them to be controlled individually -per cgroup, instead of globally. - -* tcp memory pressure: sockets memory pressure for the tcp protocol. - -2.7.2 Common use cases - -Because the "kmem" counter is fed to the main user counter, kernel memory can -never be limited completely independently of user memory. Say "U" is the user -limit, and "K" the kernel limit. There are three possible ways limits can be -set: - - U != 0, K = unlimited: - This is the standard memcg limitation mechanism already present before kmem - accounting. Kernel memory is completely ignored. - - U != 0, K < U: - Kernel memory is a subset of the user memory. This setup is useful in - deployments where the total amount of memory per-cgroup is overcommited. - Overcommiting kernel memory limits is definitely not recommended, since the - box can still run out of non-reclaimable memory. - In this case, the admin could set up K so that the sum of all groups is - never greater than the total memory, and freely set U at the cost of his - QoS. - WARNING: In the current implementation, memory reclaim will NOT be - triggered for a cgroup when it hits K while staying below U, which makes - this setup impractical. - - U != 0, K >= U: - Since kmem charges will also be fed to the user counter and reclaim will be - triggered for the cgroup for both kinds of memory. This setup gives the - admin a unified view of memory, and it is also useful for people who just - want to track kernel memory usage. - -3. User Interface - -3.0. Configuration - -a. Enable CONFIG_CGROUPS -b. Enable CONFIG_MEMCG -c. Enable CONFIG_MEMCG_SWAP (to use swap extension) -d. Enable CONFIG_MEMCG_KMEM (to use kmem extension) - -3.1. Prepare the cgroups (see cgroups.txt, Why are cgroups needed?) -# mount -t tmpfs none /sys/fs/cgroup -# mkdir /sys/fs/cgroup/memory -# mount -t cgroup none /sys/fs/cgroup/memory -o memory - -3.2. Make the new group and move bash into it -# mkdir /sys/fs/cgroup/memory/0 -# echo $$ > /sys/fs/cgroup/memory/0/tasks - -Since now we're in the 0 cgroup, we can alter the memory limit: -# echo 4M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes - -NOTE: We can use a suffix (k, K, m, M, g or G) to indicate values in kilo, -mega or gigabytes. (Here, Kilo, Mega, Giga are Kibibytes, Mebibytes, Gibibytes.) - -NOTE: We can write "-1" to reset the *.limit_in_bytes(unlimited). -NOTE: We cannot set limits on the root cgroup any more. - -# cat /sys/fs/cgroup/memory/0/memory.limit_in_bytes -4194304 - -We can check the usage: -# cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes -1216512 - -A successful write to this file does not guarantee a successful setting of -this limit to the value written into the file. This can be due to a -number of factors, such as rounding up to page boundaries or the total -availability of memory on the system. The user is required to re-read -this file after a write to guarantee the value committed by the kernel. - -# echo 1 > memory.limit_in_bytes -# cat memory.limit_in_bytes -4096 - -The memory.failcnt field gives the number of times that the cgroup limit was -exceeded. - -The memory.stat file gives accounting information. Now, the number of -caches, RSS and Active pages/Inactive pages are shown. - -4. Testing - -For testing features and implementation, see memcg_test.txt. - -Performance test is also important. To see pure memory controller's overhead, -testing on tmpfs will give you good numbers of small overheads. -Example: do kernel make on tmpfs. - -Page-fault scalability is also important. At measuring parallel -page fault test, multi-process test may be better than multi-thread -test because it has noise of shared objects/status. - -But the above two are testing extreme situations. -Trying usual test under memory controller is always helpful. - -4.1 Troubleshooting - -Sometimes a user might find that the application under a cgroup is -terminated by the OOM killer. There are several causes for this: - -1. The cgroup limit is too low (just too low to do anything useful) -2. The user is using anonymous memory and swap is turned off or too low - -A sync followed by echo 1 > /proc/sys/vm/drop_caches will help get rid of -some of the pages cached in the cgroup (page cache pages). - -To know what happens, disabling OOM_Kill as per "10. OOM Control" (below) and -seeing what happens will be helpful. - -4.2 Task migration - -When a task migrates from one cgroup to another, its charge is not -carried forward by default. The pages allocated from the original cgroup still -remain charged to it, the charge is dropped when the page is freed or -reclaimed. - -You can move charges of a task along with task migration. -See 8. "Move charges at task migration" - -4.3 Removing a cgroup - -A cgroup can be removed by rmdir, but as discussed in sections 4.1 and 4.2, a -cgroup might have some charge associated with it, even though all -tasks have migrated away from it. (because we charge against pages, not -against tasks.) - -We move the stats to root (if use_hierarchy==0) or parent (if -use_hierarchy==1), and no change on the charge except uncharging -from the child. - -Charges recorded in swap information is not updated at removal of cgroup. -Recorded information is discarded and a cgroup which uses swap (swapcache) -will be charged as a new owner of it. - -About use_hierarchy, see Section 6. - -5. Misc. interfaces. - -5.1 force_empty - memory.force_empty interface is provided to make cgroup's memory usage empty. - When writing anything to this - - # echo 0 > memory.force_empty - - the cgroup will be reclaimed and as many pages reclaimed as possible. - - The typical use case for this interface is before calling rmdir(). - Because rmdir() moves all pages to parent, some out-of-use page caches can be - moved to the parent. If you want to avoid that, force_empty will be useful. - - Also, note that when memory.kmem.limit_in_bytes is set the charges due to - kernel pages will still be seen. This is not considered a failure and the - write will still return success. In this case, it is expected that - memory.kmem.usage_in_bytes == memory.usage_in_bytes. - - About use_hierarchy, see Section 6. - -5.2 stat file - -memory.stat file includes following statistics - -# per-memory cgroup local status -cache - # of bytes of page cache memory. -rss - # of bytes of anonymous and swap cache memory (includes - transparent hugepages). -rss_huge - # of bytes of anonymous transparent hugepages. -mapped_file - # of bytes of mapped file (includes tmpfs/shmem) -pgpgin - # of charging events to the memory cgroup. The charging - event happens each time a page is accounted as either mapped - anon page(RSS) or cache page(Page Cache) to the cgroup. -pgpgout - # of uncharging events to the memory cgroup. The uncharging - event happens each time a page is unaccounted from the cgroup. -swap - # of bytes of swap usage -dirty - # of bytes that are waiting to get written back to the disk. -writeback - # of bytes of file/anon cache that are queued for syncing to - disk. -inactive_anon - # of bytes of anonymous and swap cache memory on inactive - LRU list. -active_anon - # of bytes of anonymous and swap cache memory on active - LRU list. -inactive_file - # of bytes of file-backed memory on inactive LRU list. -active_file - # of bytes of file-backed memory on active LRU list. -unevictable - # of bytes of memory that cannot be reclaimed (mlocked etc). - -# status considering hierarchy (see memory.use_hierarchy settings) - -hierarchical_memory_limit - # of bytes of memory limit with regard to hierarchy - under which the memory cgroup is -hierarchical_memsw_limit - # of bytes of memory+swap limit with regard to - hierarchy under which memory cgroup is. - -total_<counter> - # hierarchical version of <counter>, which in - addition to the cgroup's own value includes the - sum of all hierarchical children's values of - <counter>, i.e. total_cache - -# The following additional stats are dependent on CONFIG_DEBUG_VM. - -recent_rotated_anon - VM internal parameter. (see mm/vmscan.c) -recent_rotated_file - VM internal parameter. (see mm/vmscan.c) -recent_scanned_anon - VM internal parameter. (see mm/vmscan.c) -recent_scanned_file - VM internal parameter. (see mm/vmscan.c) - -Memo: - recent_rotated means recent frequency of LRU rotation. - recent_scanned means recent # of scans to LRU. - showing for better debug please see the code for meanings. - -Note: - Only anonymous and swap cache memory is listed as part of 'rss' stat. - This should not be confused with the true 'resident set size' or the - amount of physical memory used by the cgroup. - 'rss + mapped_file" will give you resident set size of cgroup. - (Note: file and shmem may be shared among other cgroups. In that case, - mapped_file is accounted only when the memory cgroup is owner of page - cache.) - -5.3 swappiness - -Overrides /proc/sys/vm/swappiness for the particular group. The tunable -in the root cgroup corresponds to the global swappiness setting. - -Please note that unlike during the global reclaim, limit reclaim -enforces that 0 swappiness really prevents from any swapping even if -there is a swap storage available. This might lead to memcg OOM killer -if there are no file pages to reclaim. - -5.4 failcnt - -A memory cgroup provides memory.failcnt and memory.memsw.failcnt files. -This failcnt(== failure count) shows the number of times that a usage counter -hit its limit. When a memory cgroup hits a limit, failcnt increases and -memory under it will be reclaimed. - -You can reset failcnt by writing 0 to failcnt file. -# echo 0 > .../memory.failcnt - -5.5 usage_in_bytes - -For efficiency, as other kernel components, memory cgroup uses some optimization -to avoid unnecessary cacheline false sharing. usage_in_bytes is affected by the -method and doesn't show 'exact' value of memory (and swap) usage, it's a fuzz -value for efficient access. (Of course, when necessary, it's synchronized.) -If you want to know more exact memory usage, you should use RSS+CACHE(+SWAP) -value in memory.stat(see 5.2). - -5.6 numa_stat - -This is similar to numa_maps but operates on a per-memcg basis. This is -useful for providing visibility into the numa locality information within -an memcg since the pages are allowed to be allocated from any physical -node. One of the use cases is evaluating application performance by -combining this information with the application's CPU allocation. - -Each memcg's numa_stat file includes "total", "file", "anon" and "unevictable" -per-node page counts including "hierarchical_<counter>" which sums up all -hierarchical children's values in addition to the memcg's own value. - -The output format of memory.numa_stat is: - -total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ... -file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ... -anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ... -unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ... -hierarchical_<counter>=<counter pages> N0=<node 0 pages> N1=<node 1 pages> ... - -The "total" count is sum of file + anon + unevictable. - -6. Hierarchy support - -The memory controller supports a deep hierarchy and hierarchical accounting. -The hierarchy is created by creating the appropriate cgroups in the -cgroup filesystem. Consider for example, the following cgroup filesystem -hierarchy - - root - / | \ - / | \ - a b c - | \ - | \ - d e - -In the diagram above, with hierarchical accounting enabled, all memory -usage of e, is accounted to its ancestors up until the root (i.e, c and root), -that has memory.use_hierarchy enabled. If one of the ancestors goes over its -limit, the reclaim algorithm reclaims from the tasks in the ancestor and the -children of the ancestor. - -6.1 Enabling hierarchical accounting and reclaim - -A memory cgroup by default disables the hierarchy feature. Support -can be enabled by writing 1 to memory.use_hierarchy file of the root cgroup - -# echo 1 > memory.use_hierarchy - -The feature can be disabled by - -# echo 0 > memory.use_hierarchy - -NOTE1: Enabling/disabling will fail if either the cgroup already has other - cgroups created below it, or if the parent cgroup has use_hierarchy - enabled. - -NOTE2: When panic_on_oom is set to "2", the whole system will panic in - case of an OOM event in any cgroup. - -7. Soft limits - -Soft limits allow for greater sharing of memory. The idea behind soft limits -is to allow control groups to use as much of the memory as needed, provided - -a. There is no memory contention -b. They do not exceed their hard limit - -When the system detects memory contention or low memory, control groups -are pushed back to their soft limits. If the soft limit of each control -group is very high, they are pushed back as much as possible to make -sure that one control group does not starve the others of memory. - -Please note that soft limits is a best-effort feature; it comes with -no guarantees, but it does its best to make sure that when memory is -heavily contended for, memory is allocated based on the soft limit -hints/setup. Currently soft limit based reclaim is set up such that -it gets invoked from balance_pgdat (kswapd). - -7.1 Interface - -Soft limits can be setup by using the following commands (in this example we -assume a soft limit of 256 MiB) - -# echo 256M > memory.soft_limit_in_bytes - -If we want to change this to 1G, we can at any time use - -# echo 1G > memory.soft_limit_in_bytes - -NOTE1: Soft limits take effect over a long period of time, since they involve - reclaiming memory for balancing between memory cgroups -NOTE2: It is recommended to set the soft limit always below the hard limit, - otherwise the hard limit will take precedence. - -8. Move charges at task migration - -Users can move charges associated with a task along with task migration, that -is, uncharge task's pages from the old cgroup and charge them to the new cgroup. -This feature is not supported in !CONFIG_MMU environments because of lack of -page tables. - -8.1 Interface - -This feature is disabled by default. It can be enabled (and disabled again) by -writing to memory.move_charge_at_immigrate of the destination cgroup. - -If you want to enable it: - -# echo (some positive value) > memory.move_charge_at_immigrate - -Note: Each bits of move_charge_at_immigrate has its own meaning about what type - of charges should be moved. See 8.2 for details. -Note: Charges are moved only when you move mm->owner, in other words, - a leader of a thread group. -Note: If we cannot find enough space for the task in the destination cgroup, we - try to make space by reclaiming memory. Task migration may fail if we - cannot make enough space. -Note: It can take several seconds if you move charges much. - -And if you want disable it again: - -# echo 0 > memory.move_charge_at_immigrate - -8.2 Type of charges which can be moved - -Each bit in move_charge_at_immigrate has its own meaning about what type of -charges should be moved. But in any case, it must be noted that an account of -a page or a swap can be moved only when it is charged to the task's current -(old) memory cgroup. - - bit | what type of charges would be moved ? - -----+------------------------------------------------------------------------ - 0 | A charge of an anonymous page (or swap of it) used by the target task. - | You must enable Swap Extension (see 2.4) to enable move of swap charges. - -----+------------------------------------------------------------------------ - 1 | A charge of file pages (normal file, tmpfs file (e.g. ipc shared memory) - | and swaps of tmpfs file) mmapped by the target task. Unlike the case of - | anonymous pages, file pages (and swaps) in the range mmapped by the task - | will be moved even if the task hasn't done page fault, i.e. they might - | not be the task's "RSS", but other task's "RSS" that maps the same file. - | And mapcount of the page is ignored (the page can be moved even if - | page_mapcount(page) > 1). You must enable Swap Extension (see 2.4) to - | enable move of swap charges. - -8.3 TODO - -- All of moving charge operations are done under cgroup_mutex. It's not good - behavior to hold the mutex too long, so we may need some trick. - -9. Memory thresholds - -Memory cgroup implements memory thresholds using the cgroups notification -API (see cgroups.txt). It allows to register multiple memory and memsw -thresholds and gets notifications when it crosses. - -To register a threshold, an application must: -- create an eventfd using eventfd(2); -- open memory.usage_in_bytes or memory.memsw.usage_in_bytes; -- write string like "<event_fd> <fd of memory.usage_in_bytes> <threshold>" to - cgroup.event_control. - -Application will be notified through eventfd when memory usage crosses -threshold in any direction. - -It's applicable for root and non-root cgroup. - -10. OOM Control - -memory.oom_control file is for OOM notification and other controls. - -Memory cgroup implements OOM notifier using the cgroup notification -API (See cgroups.txt). It allows to register multiple OOM notification -delivery and gets notification when OOM happens. - -To register a notifier, an application must: - - create an eventfd using eventfd(2) - - open memory.oom_control file - - write string like "<event_fd> <fd of memory.oom_control>" to - cgroup.event_control - -The application will be notified through eventfd when OOM happens. -OOM notification doesn't work for the root cgroup. - -You can disable the OOM-killer by writing "1" to memory.oom_control file, as: - - #echo 1 > memory.oom_control - -If OOM-killer is disabled, tasks under cgroup will hang/sleep -in memory cgroup's OOM-waitqueue when they request accountable memory. - -For running them, you have to relax the memory cgroup's OOM status by - * enlarge limit or reduce usage. -To reduce usage, - * kill some tasks. - * move some tasks to other group with account migration. - * remove some files (on tmpfs?) - -Then, stopped tasks will work again. - -At reading, current status of OOM is shown. - oom_kill_disable 0 or 1 (if 1, oom-killer is disabled) - under_oom 0 or 1 (if 1, the memory cgroup is under OOM, tasks may - be stopped.) - -11. Memory Pressure - -The pressure level notifications can be used to monitor the memory -allocation cost; based on the pressure, applications can implement -different strategies of managing their memory resources. The pressure -levels are defined as following: - -The "low" level means that the system is reclaiming memory for new -allocations. Monitoring this reclaiming activity might be useful for -maintaining cache level. Upon notification, the program (typically -"Activity Manager") might analyze vmstat and act in advance (i.e. -prematurely shutdown unimportant services). - -The "medium" level means that the system is experiencing medium memory -pressure, the system might be making swap, paging out active file caches, -etc. Upon this event applications may decide to further analyze -vmstat/zoneinfo/memcg or internal memory usage statistics and free any -resources that can be easily reconstructed or re-read from a disk. - -The "critical" level means that the system is actively thrashing, it is -about to out of memory (OOM) or even the in-kernel OOM killer is on its -way to trigger. Applications should do whatever they can to help the -system. It might be too late to consult with vmstat or any other -statistics, so it's advisable to take an immediate action. - -By default, events are propagated upward until the event is handled, i.e. the -events are not pass-through. For example, you have three cgroups: A->B->C. Now -you set up an event listener on cgroups A, B and C, and suppose group C -experiences some pressure. In this situation, only group C will receive the -notification, i.e. groups A and B will not receive it. This is done to avoid -excessive "broadcasting" of messages, which disturbs the system and which is -especially bad if we are low on memory or thrashing. Group B, will receive -notification only if there are no event listers for group C. - -There are three optional modes that specify different propagation behavior: - - - "default": this is the default behavior specified above. This mode is the - same as omitting the optional mode parameter, preserved by backwards - compatibility. - - - "hierarchy": events always propagate up to the root, similar to the default - behavior, except that propagation continues regardless of whether there are - event listeners at each level, with the "hierarchy" mode. In the above - example, groups A, B, and C will receive notification of memory pressure. - - - "local": events are pass-through, i.e. they only receive notifications when - memory pressure is experienced in the memcg for which the notification is - registered. In the above example, group C will receive notification if - registered for "local" notification and the group experiences memory - pressure. However, group B will never receive notification, regardless if - there is an event listener for group C or not, if group B is registered for - local notification. - -The level and event notification mode ("hierarchy" or "local", if necessary) are -specified by a comma-delimited string, i.e. "low,hierarchy" specifies -hierarchical, pass-through, notification for all ancestor memcgs. Notification -that is the default, non pass-through behavior, does not specify a mode. -"medium,local" specifies pass-through notification for the medium level. - -The file memory.pressure_level is only used to setup an eventfd. To -register a notification, an application must: - -- create an eventfd using eventfd(2); -- open memory.pressure_level; -- write string as "<event_fd> <fd of memory.pressure_level> <level[,mode]>" - to cgroup.event_control. - -Application will be notified through eventfd when memory pressure is at -the specific level (or higher). Read/write operations to -memory.pressure_level are no implemented. - -Test: - - Here is a small script example that makes a new cgroup, sets up a - memory limit, sets up a notification in the cgroup and then makes child - cgroup experience a critical pressure: - - # cd /sys/fs/cgroup/memory/ - # mkdir foo - # cd foo - # cgroup_event_listener memory.pressure_level low,hierarchy & - # echo 8000000 > memory.limit_in_bytes - # echo 8000000 > memory.memsw.limit_in_bytes - # echo $$ > tasks - # dd if=/dev/zero | read x - - (Expect a bunch of notifications, and eventually, the oom-killer will - trigger.) - -12. TODO - -1. Make per-cgroup scanner reclaim not-shared pages first -2. Teach controller to account for shared-pages -3. Start reclamation in the background when the limit is - not yet hit but the usage is getting closer - -Summary - -Overall, the memory controller has been a stable controller and has been -commented and discussed quite extensively in the community. - -References - -1. Singh, Balbir. RFC: Memory Controller, http://lwn.net/Articles/206697/ -2. Singh, Balbir. Memory Controller (RSS Control), - http://lwn.net/Articles/222762/ -3. Emelianov, Pavel. Resource controllers based on process cgroups - http://lkml.org/lkml/2007/3/6/198 -4. Emelianov, Pavel. RSS controller based on process cgroups (v2) - http://lkml.org/lkml/2007/4/9/78 -5. Emelianov, Pavel. RSS controller based on process cgroups (v3) - http://lkml.org/lkml/2007/5/30/244 -6. Menage, Paul. Control Groups v10, http://lwn.net/Articles/236032/ -7. Vaidyanathan, Srinivasan, Control Groups: Pagecache accounting and control - subsystem (v3), http://lwn.net/Articles/235534/ -8. Singh, Balbir. RSS controller v2 test results (lmbench), - http://lkml.org/lkml/2007/5/17/232 -9. Singh, Balbir. RSS controller v2 AIM9 results - http://lkml.org/lkml/2007/5/18/1 -10. Singh, Balbir. Memory controller v6 test results, - http://lkml.org/lkml/2007/8/19/36 -11. Singh, Balbir. Memory controller introduction (v6), - http://lkml.org/lkml/2007/8/17/69 -12. Corbet, Jonathan, Controlling memory use in cgroups, - http://lwn.net/Articles/243795/ |