diff options
Diffstat (limited to 'Documentation/arm/SA1100/Assabet')
-rw-r--r-- | Documentation/arm/SA1100/Assabet | 300 |
1 files changed, 0 insertions, 300 deletions
diff --git a/Documentation/arm/SA1100/Assabet b/Documentation/arm/SA1100/Assabet deleted file mode 100644 index e08a6739e72c..000000000000 --- a/Documentation/arm/SA1100/Assabet +++ /dev/null @@ -1,300 +0,0 @@ -The Intel Assabet (SA-1110 evaluation) board -============================================ - -Please see: -http://developer.intel.com - -Also some notes from John G Dorsey <jd5q@andrew.cmu.edu>: -http://www.cs.cmu.edu/~wearable/software/assabet.html - - -Building the kernel -------------------- - -To build the kernel with current defaults: - - make assabet_config - make oldconfig - make zImage - -The resulting kernel image should be available in linux/arch/arm/boot/zImage. - - -Installing a bootloader ------------------------ - -A couple of bootloaders able to boot Linux on Assabet are available: - -BLOB (http://www.lartmaker.nl/lartware/blob/) - - BLOB is a bootloader used within the LART project. Some contributed - patches were merged into BLOB to add support for Assabet. - -Compaq's Bootldr + John Dorsey's patch for Assabet support -(http://www.handhelds.org/Compaq/bootldr.html) -(http://www.wearablegroup.org/software/bootldr/) - - Bootldr is the bootloader developed by Compaq for the iPAQ Pocket PC. - John Dorsey has produced add-on patches to add support for Assabet and - the JFFS filesystem. - -RedBoot (http://sources.redhat.com/redboot/) - - RedBoot is a bootloader developed by Red Hat based on the eCos RTOS - hardware abstraction layer. It supports Assabet amongst many other - hardware platforms. - -RedBoot is currently the recommended choice since it's the only one to have -networking support, and is the most actively maintained. - -Brief examples on how to boot Linux with RedBoot are shown below. But first -you need to have RedBoot installed in your flash memory. A known to work -precompiled RedBoot binary is available from the following location: - -ftp://ftp.netwinder.org/users/n/nico/ -ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/nico/ -ftp://ftp.handhelds.org/pub/linux/arm/sa-1100-patches/ - -Look for redboot-assabet*.tgz. Some installation infos are provided in -redboot-assabet*.txt. - - -Initial RedBoot configuration ------------------------------ - -The commands used here are explained in The RedBoot User's Guide available -on-line at http://sources.redhat.com/ecos/docs.html. -Please refer to it for explanations. - -If you have a CF network card (my Assabet kit contained a CF+ LP-E from -Socket Communications Inc.), you should strongly consider using it for TFTP -file transfers. You must insert it before RedBoot runs since it can't detect -it dynamically. - -To initialize the flash directory: - - fis init -f - -To initialize the non-volatile settings, like whether you want to use BOOTP or -a static IP address, etc, use this command: - - fconfig -i - - -Writing a kernel image into flash ---------------------------------- - -First, the kernel image must be loaded into RAM. If you have the zImage file -available on a TFTP server: - - load zImage -r -b 0x100000 - -If you rather want to use Y-Modem upload over the serial port: - - load -m ymodem -r -b 0x100000 - -To write it to flash: - - fis create "Linux kernel" -b 0x100000 -l 0xc0000 - - -Booting the kernel ------------------- - -The kernel still requires a filesystem to boot. A ramdisk image can be loaded -as follows: - - load ramdisk_image.gz -r -b 0x800000 - -Again, Y-Modem upload can be used instead of TFTP by replacing the file name -by '-y ymodem'. - -Now the kernel can be retrieved from flash like this: - - fis load "Linux kernel" - -or loaded as described previously. To boot the kernel: - - exec -b 0x100000 -l 0xc0000 - -The ramdisk image could be stored into flash as well, but there are better -solutions for on-flash filesystems as mentioned below. - - -Using JFFS2 ------------ - -Using JFFS2 (the Second Journalling Flash File System) is probably the most -convenient way to store a writable filesystem into flash. JFFS2 is used in -conjunction with the MTD layer which is responsible for low-level flash -management. More information on the Linux MTD can be found on-line at: -http://www.linux-mtd.infradead.org/. A JFFS howto with some infos about -creating JFFS/JFFS2 images is available from the same site. - -For instance, a sample JFFS2 image can be retrieved from the same FTP sites -mentioned below for the precompiled RedBoot image. - -To load this file: - - load sample_img.jffs2 -r -b 0x100000 - -The result should look like: - -RedBoot> load sample_img.jffs2 -r -b 0x100000 -Raw file loaded 0x00100000-0x00377424 - -Now we must know the size of the unallocated flash: - - fis free - -Result: - -RedBoot> fis free - 0x500E0000 .. 0x503C0000 - -The values above may be different depending on the size of the filesystem and -the type of flash. See their usage below as an example and take care of -substituting yours appropriately. - -We must determine some values: - -size of unallocated flash: 0x503c0000 - 0x500e0000 = 0x2e0000 -size of the filesystem image: 0x00377424 - 0x00100000 = 0x277424 - -We want to fit the filesystem image of course, but we also want to give it all -the remaining flash space as well. To write it: - - fis unlock -f 0x500E0000 -l 0x2e0000 - fis erase -f 0x500E0000 -l 0x2e0000 - fis write -b 0x100000 -l 0x277424 -f 0x500E0000 - fis create "JFFS2" -n -f 0x500E0000 -l 0x2e0000 - -Now the filesystem is associated to a MTD "partition" once Linux has discovered -what they are in the boot process. From Redboot, the 'fis list' command -displays them: - -RedBoot> fis list -Name FLASH addr Mem addr Length Entry point -RedBoot 0x50000000 0x50000000 0x00020000 0x00000000 -RedBoot config 0x503C0000 0x503C0000 0x00020000 0x00000000 -FIS directory 0x503E0000 0x503E0000 0x00020000 0x00000000 -Linux kernel 0x50020000 0x00100000 0x000C0000 0x00000000 -JFFS2 0x500E0000 0x500E0000 0x002E0000 0x00000000 - -However Linux should display something like: - -SA1100 flash: probing 32-bit flash bus -SA1100 flash: Found 2 x16 devices at 0x0 in 32-bit mode -Using RedBoot partition definition -Creating 5 MTD partitions on "SA1100 flash": -0x00000000-0x00020000 : "RedBoot" -0x00020000-0x000e0000 : "Linux kernel" -0x000e0000-0x003c0000 : "JFFS2" -0x003c0000-0x003e0000 : "RedBoot config" -0x003e0000-0x00400000 : "FIS directory" - -What's important here is the position of the partition we are interested in, -which is the third one. Within Linux, this correspond to /dev/mtdblock2. -Therefore to boot Linux with the kernel and its root filesystem in flash, we -need this RedBoot command: - - fis load "Linux kernel" - exec -b 0x100000 -l 0xc0000 -c "root=/dev/mtdblock2" - -Of course other filesystems than JFFS might be used, like cramfs for example. -You might want to boot with a root filesystem over NFS, etc. It is also -possible, and sometimes more convenient, to flash a filesystem directly from -within Linux while booted from a ramdisk or NFS. The Linux MTD repository has -many tools to deal with flash memory as well, to erase it for example. JFFS2 -can then be mounted directly on a freshly erased partition and files can be -copied over directly. Etc... - - -RedBoot scripting ------------------ - -All the commands above aren't so useful if they have to be typed in every -time the Assabet is rebooted. Therefore it's possible to automate the boot -process using RedBoot's scripting capability. - -For example, I use this to boot Linux with both the kernel and the ramdisk -images retrieved from a TFTP server on the network: - -RedBoot> fconfig -Run script at boot: false true -Boot script: -Enter script, terminate with empty line ->> load zImage -r -b 0x100000 ->> load ramdisk_ks.gz -r -b 0x800000 ->> exec -b 0x100000 -l 0xc0000 ->> -Boot script timeout (1000ms resolution): 3 -Use BOOTP for network configuration: true -GDB connection port: 9000 -Network debug at boot time: false -Update RedBoot non-volatile configuration - are you sure (y/n)? y - -Then, rebooting the Assabet is just a matter of waiting for the login prompt. - - - -Nicolas Pitre -nico@fluxnic.net -June 12, 2001 - - -Status of peripherals in -rmk tree (updated 14/10/2001) -------------------------------------------------------- - -Assabet: - Serial ports: - Radio: TX, RX, CTS, DSR, DCD, RI - PM: Not tested. - COM: TX, RX, CTS, DSR, DCD, RTS, DTR, PM - PM: Not tested. - I2C: Implemented, not fully tested. - L3: Fully tested, pass. - PM: Not tested. - - Video: - LCD: Fully tested. PM - (LCD doesn't like being blanked with - neponset connected) - Video out: Not fully - - Audio: - UDA1341: - Playback: Fully tested, pass. - Record: Implemented, not tested. - PM: Not tested. - - UCB1200: - Audio play: Implemented, not heavily tested. - Audio rec: Implemented, not heavily tested. - Telco audio play: Implemented, not heavily tested. - Telco audio rec: Implemented, not heavily tested. - POTS control: No - Touchscreen: Yes - PM: Not tested. - - Other: - PCMCIA: - LPE: Fully tested, pass. - USB: No - IRDA: - SIR: Fully tested, pass. - FIR: Fully tested, pass. - PM: Not tested. - -Neponset: - Serial ports: - COM1,2: TX, RX, CTS, DSR, DCD, RTS, DTR - PM: Not tested. - USB: Implemented, not heavily tested. - PCMCIA: Implemented, not heavily tested. - PM: Not tested. - CF: Implemented, not heavily tested. - PM: Not tested. - -More stuff can be found in the -np (Nicolas Pitre's) tree. - |