diff options
author | Mauro Carvalho Chehab <mchehab@s-opensource.com> | 2017-04-05 03:51:04 +0300 |
---|---|---|
committer | Dmitry Torokhov <dmitry.torokhov@gmail.com> | 2017-04-06 01:45:07 +0300 |
commit | e2ba573120feadfb365467f0cdae2918926efabc (patch) | |
tree | 0274ef579fcafc4646d0c82eeb4ae826ff61cfbd /Documentation/input/joystick-api.txt | |
parent | 1ad1473f65da8e61120e8f1b68bc92f2b71ba879 (diff) | |
download | linux-e2ba573120feadfb365467f0cdae2918926efabc.tar.xz |
Input: create a book with Linux Input documentation
Now that all files under Documentation/input follows the ReST markup
language, rename them to *.rst and create a book for the Linux Input
subsystem.
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Diffstat (limited to 'Documentation/input/joystick-api.txt')
-rw-r--r-- | Documentation/input/joystick-api.txt | 326 |
1 files changed, 0 insertions, 326 deletions
diff --git a/Documentation/input/joystick-api.txt b/Documentation/input/joystick-api.txt deleted file mode 100644 index 9b9d26833086..000000000000 --- a/Documentation/input/joystick-api.txt +++ /dev/null @@ -1,326 +0,0 @@ -========================== -Joystick API Documentation -========================== - -:Author: Ragnar Hojland Espinosa <ragnar@macula.net> - 7 Aug 1998 - -Initialization -============== - -Open the joystick device following the usual semantics (that is, with open). -Since the driver now reports events instead of polling for changes, -immediately after the open it will issue a series of synthetic events -(JS_EVENT_INIT) that you can read to check the initial state of the -joystick. - -By default, the device is opened in blocking mode:: - - int fd = open ("/dev/input/js0", O_RDONLY); - - -Event Reading -============= - -:: - - struct js_event e; - read (fd, &e, sizeof(e)); - -where js_event is defined as:: - - struct js_event { - __u32 time; /* event timestamp in milliseconds */ - __s16 value; /* value */ - __u8 type; /* event type */ - __u8 number; /* axis/button number */ - }; - -If the read is successful, it will return sizeof(e), unless you wanted to read -more than one event per read as described in section 3.1. - - -js_event.type -------------- - -The possible values of ``type`` are:: - - #define JS_EVENT_BUTTON 0x01 /* button pressed/released */ - #define JS_EVENT_AXIS 0x02 /* joystick moved */ - #define JS_EVENT_INIT 0x80 /* initial state of device */ - -As mentioned above, the driver will issue synthetic JS_EVENT_INIT ORed -events on open. That is, if it's issuing a INIT BUTTON event, the -current type value will be:: - - int type = JS_EVENT_BUTTON | JS_EVENT_INIT; /* 0x81 */ - -If you choose not to differentiate between synthetic or real events -you can turn off the JS_EVENT_INIT bits:: - - type &= ~JS_EVENT_INIT; /* 0x01 */ - - -js_event.number ---------------- - -The values of ``number`` correspond to the axis or button that -generated the event. Note that they carry separate numeration (that -is, you have both an axis 0 and a button 0). Generally, - - =============== ======= - Axis number - =============== ======= - 1st Axis X 0 - 1st Axis Y 1 - 2nd Axis X 2 - 2nd Axis Y 3 - ...and so on - =============== ======= - -Hats vary from one joystick type to another. Some can be moved in 8 -directions, some only in 4, The driver, however, always reports a hat as two -independent axis, even if the hardware doesn't allow independent movement. - - -js_event.value --------------- - -For an axis, ``value`` is a signed integer between -32767 and +32767 -representing the position of the joystick along that axis. If you -don't read a 0 when the joystick is ``dead``, or if it doesn't span the -full range, you should recalibrate it (with, for example, jscal). - -For a button, ``value`` for a press button event is 1 and for a release -button event is 0. - -Though this:: - - if (js_event.type == JS_EVENT_BUTTON) { - buttons_state ^= (1 << js_event.number); - } - -may work well if you handle JS_EVENT_INIT events separately, - -:: - - if ((js_event.type & ~JS_EVENT_INIT) == JS_EVENT_BUTTON) { - if (js_event.value) - buttons_state |= (1 << js_event.number); - else - buttons_state &= ~(1 << js_event.number); - } - -is much safer since it can't lose sync with the driver. As you would -have to write a separate handler for JS_EVENT_INIT events in the first -snippet, this ends up being shorter. - - -js_event.time -------------- - -The time an event was generated is stored in ``js_event.time``. It's a time -in milliseconds since ... well, since sometime in the past. This eases the -task of detecting double clicks, figuring out if movement of axis and button -presses happened at the same time, and similar. - - -Reading -======= - -If you open the device in blocking mode, a read will block (that is, -wait) forever until an event is generated and effectively read. There -are two alternatives if you can't afford to wait forever (which is, -admittedly, a long time;) - - a) use select to wait until there's data to be read on fd, or - until it timeouts. There's a good example on the select(2) - man page. - - b) open the device in non-blocking mode (O_NONBLOCK) - - -O_NONBLOCK ----------- - -If read returns -1 when reading in O_NONBLOCK mode, this isn't -necessarily a "real" error (check errno(3)); it can just mean there -are no events pending to be read on the driver queue. You should read -all events on the queue (that is, until you get a -1). - -For example, - -:: - - while (1) { - while (read (fd, &e, sizeof(e)) > 0) { - process_event (e); - } - /* EAGAIN is returned when the queue is empty */ - if (errno != EAGAIN) { - /* error */ - } - /* do something interesting with processed events */ - } - -One reason for emptying the queue is that if it gets full you'll start -missing events since the queue is finite, and older events will get -overwritten. - -The other reason is that you want to know all what happened, and not -delay the processing till later. - -Why can get the queue full? Because you don't empty the queue as -mentioned, or because too much time elapses from one read to another -and too many events to store in the queue get generated. Note that -high system load may contribute to space those reads even more. - -If time between reads is enough to fill the queue and lose an event, -the driver will switch to startup mode and next time you read it, -synthetic events (JS_EVENT_INIT) will be generated to inform you of -the actual state of the joystick. - - -.. note:: - - As for version 1.2.8, the queue is circular and able to hold 64 - events. You can increment this size bumping up JS_BUFF_SIZE in - joystick.h and recompiling the driver. - - -In the above code, you might as well want to read more than one event -at a time using the typical read(2) functionality. For that, you would -replace the read above with something like:: - - struct js_event mybuffer[0xff]; - int i = read (fd, mybuffer, sizeof(mybuffer)); - -In this case, read would return -1 if the queue was empty, or some -other value in which the number of events read would be i / -sizeof(js_event) Again, if the buffer was full, it's a good idea to -process the events and keep reading it until you empty the driver queue. - - -IOCTLs -====== - -The joystick driver defines the following ioctl(2) operations:: - - /* function 3rd arg */ - #define JSIOCGAXES /* get number of axes char */ - #define JSIOCGBUTTONS /* get number of buttons char */ - #define JSIOCGVERSION /* get driver version int */ - #define JSIOCGNAME(len) /* get identifier string char */ - #define JSIOCSCORR /* set correction values &js_corr */ - #define JSIOCGCORR /* get correction values &js_corr */ - -For example, to read the number of axes:: - - char number_of_axes; - ioctl (fd, JSIOCGAXES, &number_of_axes); - - -JSIOGCVERSION -------------- - -JSIOGCVERSION is a good way to check in run-time whether the running -driver is 1.0+ and supports the event interface. If it is not, the -IOCTL will fail. For a compile-time decision, you can test the -JS_VERSION symbol:: - - #ifdef JS_VERSION - #if JS_VERSION > 0xsomething - - -JSIOCGNAME ----------- - -JSIOCGNAME(len) allows you to get the name string of the joystick - the same -as is being printed at boot time. The 'len' argument is the length of the -buffer provided by the application asking for the name. It is used to avoid -possible overrun should the name be too long:: - - char name[128]; - if (ioctl(fd, JSIOCGNAME(sizeof(name)), name) < 0) - strncpy(name, "Unknown", sizeof(name)); - printf("Name: %s\n", name); - - -JSIOC[SG]CORR -------------- - -For usage on JSIOC[SG]CORR I suggest you to look into jscal.c They are -not needed in a normal program, only in joystick calibration software -such as jscal or kcmjoy. These IOCTLs and data types aren't considered -to be in the stable part of the API, and therefore may change without -warning in following releases of the driver. - -Both JSIOCSCORR and JSIOCGCORR expect &js_corr to be able to hold -information for all axis. That is, struct js_corr corr[MAX_AXIS]; - -struct js_corr is defined as:: - - struct js_corr { - __s32 coef[8]; - __u16 prec; - __u16 type; - }; - -and ``type``:: - - #define JS_CORR_NONE 0x00 /* returns raw values */ - #define JS_CORR_BROKEN 0x01 /* broken line */ - - -Backward compatibility -====================== - -The 0.x joystick driver API is quite limited and its usage is deprecated. -The driver offers backward compatibility, though. Here's a quick summary:: - - struct JS_DATA_TYPE js; - while (1) { - if (read (fd, &js, JS_RETURN) != JS_RETURN) { - /* error */ - } - usleep (1000); - } - -As you can figure out from the example, the read returns immediately, -with the actual state of the joystick:: - - struct JS_DATA_TYPE { - int buttons; /* immediate button state */ - int x; /* immediate x axis value */ - int y; /* immediate y axis value */ - }; - -and JS_RETURN is defined as:: - - #define JS_RETURN sizeof(struct JS_DATA_TYPE) - -To test the state of the buttons, - -:: - - first_button_state = js.buttons & 1; - second_button_state = js.buttons & 2; - -The axis values do not have a defined range in the original 0.x driver, -except for that the values are non-negative. The 1.2.8+ drivers use a -fixed range for reporting the values, 1 being the minimum, 128 the -center, and 255 maximum value. - -The v0.8.0.2 driver also had an interface for 'digital joysticks', (now -called Multisystem joysticks in this driver), under /dev/djsX. This driver -doesn't try to be compatible with that interface. - - -Final Notes -=========== - -:: - - ____/| Comments, additions, and specially corrections are welcome. - \ o.O| Documentation valid for at least version 1.2.8 of the joystick - =(_)= driver and as usual, the ultimate source for documentation is - U to "Use The Source Luke" or, at your convenience, Vojtech ;) |