diff options
author | Inaky Perez-Gonzalez <inaky@linux.intel.com> | 2008-12-21 03:57:44 +0300 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@suse.de> | 2009-01-07 21:00:18 +0300 |
commit | 024f7f31ed15c471f80408d8b5045497e27e1135 (patch) | |
tree | cae3fcb7b2c12245dd0f2d9630dee5b01ea32c42 | |
parent | ea24652d253eabfb83e955e55ce032228d9d99b9 (diff) | |
download | linux-024f7f31ed15c471f80408d8b5045497e27e1135.tar.xz |
i2400m: Generic probe/disconnect, reset and message passing
Implements the generic probe and disconnect functions that will be
called by the USB and SDIO driver's probe/disconnect functions.
Implements the backends for the WiMAX stack's basic operations:
message passing, rfkill control and reset.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
-rw-r--r-- | drivers/net/wimax/i2400m/driver.c | 728 | ||||
-rw-r--r-- | drivers/net/wimax/i2400m/op-rfkill.c | 207 |
2 files changed, 935 insertions, 0 deletions
diff --git a/drivers/net/wimax/i2400m/driver.c b/drivers/net/wimax/i2400m/driver.c new file mode 100644 index 000000000000..5f98047e18cf --- /dev/null +++ b/drivers/net/wimax/i2400m/driver.c @@ -0,0 +1,728 @@ +/* + * Intel Wireless WiMAX Connection 2400m + * Generic probe/disconnect, reset and message passing + * + * + * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com> + * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License version + * 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA + * 02110-1301, USA. + * + * + * See i2400m.h for driver documentation. This contains helpers for + * the driver model glue [_setup()/_release()], handling device resets + * [_dev_reset_handle()], and the backends for the WiMAX stack ops + * reset [_op_reset()] and message from user [_op_msg_from_user()]. + * + * ROADMAP: + * + * i2400m_op_msg_from_user() + * i2400m_msg_to_dev() + * wimax_msg_to_user_send() + * + * i2400m_op_reset() + * i240m->bus_reset() + * + * i2400m_dev_reset_handle() + * __i2400m_dev_reset_handle() + * __i2400m_dev_stop() + * __i2400m_dev_start() + * + * i2400m_setup() + * i2400m_bootrom_init() + * register_netdev() + * i2400m_dev_start() + * __i2400m_dev_start() + * i2400m_dev_bootstrap() + * i2400m_tx_setup() + * i2400m->bus_dev_start() + * i2400m_check_mac_addr() + * wimax_dev_add() + * + * i2400m_release() + * wimax_dev_rm() + * i2400m_dev_stop() + * __i2400m_dev_stop() + * i2400m_dev_shutdown() + * i2400m->bus_dev_stop() + * i2400m_tx_release() + * unregister_netdev() + */ +#include "i2400m.h" +#include <linux/wimax/i2400m.h> +#include <linux/module.h> +#include <linux/moduleparam.h> + +#define D_SUBMODULE driver +#include "debug-levels.h" + + +int i2400m_idle_mode_disabled; /* 0 (idle mode enabled) by default */ +module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644); +MODULE_PARM_DESC(idle_mode_disabled, + "If true, the device will not enable idle mode negotiation " + "with the base station (when connected) to save power."); + +/** + * i2400m_queue_work - schedule work on a i2400m's queue + * + * @i2400m: device descriptor + * + * @fn: function to run to execute work. It gets passed a 'struct + * work_struct' that is wrapped in a 'struct i2400m_work'. Once + * done, you have to (1) i2400m_put(i2400m_work->i2400m) and then + * (2) kfree(i2400m_work). + * + * @gfp_flags: GFP flags for memory allocation. + * + * @pl: pointer to a payload buffer that you want to pass to the _work + * function. Use this to pack (for example) a struct with extra + * arguments. + * + * @pl_size: size of the payload buffer. + * + * We do this quite often, so this just saves typing; allocate a + * wrapper for a i2400m, get a ref to it, pack arguments and launch + * the work. + * + * A usual workflow is: + * + * struct my_work_args { + * void *something; + * int whatever; + * }; + * ... + * + * struct my_work_args my_args = { + * .something = FOO, + * .whaetever = BLAH + * }; + * i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL, + * &args, sizeof(args)) + * + * And now the work function can unpack the arguments and call the + * real function (or do the job itself): + * + * static + * void my_work_fn((struct work_struct *ws) + * { + * struct i2400m_work *iw = + * container_of(ws, struct i2400m_work, ws); + * struct my_work_args *my_args = (void *) iw->pl; + * + * my_work(iw->i2400m, my_args->something, my_args->whatevert); + * } + */ +int i2400m_queue_work(struct i2400m *i2400m, + void (*fn)(struct work_struct *), gfp_t gfp_flags, + const void *pl, size_t pl_size) +{ + int result; + struct i2400m_work *iw; + + BUG_ON(i2400m->work_queue == NULL); + result = -ENOMEM; + iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags); + if (iw == NULL) + goto error_kzalloc; + iw->i2400m = i2400m_get(i2400m); + memcpy(iw->pl, pl, pl_size); + INIT_WORK(&iw->ws, fn); + result = queue_work(i2400m->work_queue, &iw->ws); +error_kzalloc: + return result; +} +EXPORT_SYMBOL_GPL(i2400m_queue_work); + + +/* + * Schedule i2400m's specific work on the system's queue. + * + * Used for a few cases where we really need it; otherwise, identical + * to i2400m_queue_work(). + * + * Returns < 0 errno code on error, 1 if ok. + * + * If it returns zero, something really bad happened, as it means the + * works struct was already queued, but we have just allocated it, so + * it should not happen. + */ +int i2400m_schedule_work(struct i2400m *i2400m, + void (*fn)(struct work_struct *), gfp_t gfp_flags) +{ + int result; + struct i2400m_work *iw; + + BUG_ON(i2400m->work_queue == NULL); + result = -ENOMEM; + iw = kzalloc(sizeof(*iw), gfp_flags); + if (iw == NULL) + goto error_kzalloc; + iw->i2400m = i2400m_get(i2400m); + INIT_WORK(&iw->ws, fn); + result = schedule_work(&iw->ws); + if (result == 0) + result = -ENXIO; +error_kzalloc: + return result; +} + + +/* + * WiMAX stack operation: relay a message from user space + * + * @wimax_dev: device descriptor + * @pipe_name: named pipe the message is for + * @msg_buf: pointer to the message bytes + * @msg_len: length of the buffer + * @genl_info: passed by the generic netlink layer + * + * The WiMAX stack will call this function when a message was received + * from user space. + * + * For the i2400m, this is an L3L4 message, as specified in + * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct + * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be + * coded in Little Endian. + * + * This function just verifies that the header declaration and the + * payload are consistent and then deals with it, either forwarding it + * to the device or procesing it locally. + * + * In the i2400m, messages are basically commands that will carry an + * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to + * user space. The rx.c code might intercept the response and use it + * to update the driver's state, but then it will pass it on so it can + * be relayed back to user space. + * + * Note that asynchronous events from the device are processed and + * sent to user space in rx.c. + */ +static +int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev, + const char *pipe_name, + const void *msg_buf, size_t msg_len, + const struct genl_info *genl_info) +{ + int result; + struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev); + struct device *dev = i2400m_dev(i2400m); + struct sk_buff *ack_skb; + + d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p " + "msg_len %zu genl_info %p)\n", wimax_dev, i2400m, + msg_buf, msg_len, genl_info); + ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len); + result = PTR_ERR(ack_skb); + if (IS_ERR(ack_skb)) + goto error_msg_to_dev; + if (unlikely(i2400m->trace_msg_from_user)) + wimax_msg(&i2400m->wimax_dev, "trace", + msg_buf, msg_len, GFP_KERNEL); + result = wimax_msg_send(&i2400m->wimax_dev, ack_skb); +error_msg_to_dev: + d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu " + "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len, + genl_info, result); + return result; +} + + +/* + * Context to wait for a reset to finalize + */ +struct i2400m_reset_ctx { + struct completion completion; + int result; +}; + + +/* + * WiMAX stack operation: reset a device + * + * @wimax_dev: device descriptor + * + * See the documentation for wimax_reset() and wimax_dev->op_reset for + * the requirements of this function. The WiMAX stack guarantees + * serialization on calls to this function. + * + * Do a warm reset on the device; if it fails, resort to a cold reset + * and return -ENODEV. On successful warm reset, we need to block + * until it is complete. + * + * The bus-driver implementation of reset takes care of falling back + * to cold reset if warm fails. + */ +static +int i2400m_op_reset(struct wimax_dev *wimax_dev) +{ + int result; + struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev); + struct device *dev = i2400m_dev(i2400m); + struct i2400m_reset_ctx ctx = { + .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion), + .result = 0, + }; + + d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev); + mutex_lock(&i2400m->init_mutex); + i2400m->reset_ctx = &ctx; + mutex_unlock(&i2400m->init_mutex); + result = i2400m->bus_reset(i2400m, I2400M_RT_WARM); + if (result < 0) + goto out; + result = wait_for_completion_timeout(&ctx.completion, 4*HZ); + if (result == 0) + result = -ETIMEDOUT; + else if (result > 0) + result = ctx.result; + /* if result < 0, pass it on */ + mutex_lock(&i2400m->init_mutex); + i2400m->reset_ctx = NULL; + mutex_unlock(&i2400m->init_mutex); +out: + d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result); + return result; +} + + +/* + * Check the MAC address we got from boot mode is ok + * + * @i2400m: device descriptor + * + * Returns: 0 if ok, < 0 errno code on error. + */ +static +int i2400m_check_mac_addr(struct i2400m *i2400m) +{ + int result; + struct device *dev = i2400m_dev(i2400m); + struct sk_buff *skb; + const struct i2400m_tlv_detailed_device_info *ddi; + struct net_device *net_dev = i2400m->wimax_dev.net_dev; + const unsigned char zeromac[ETH_ALEN] = { 0 }; + + d_fnstart(3, dev, "(i2400m %p)\n", i2400m); + skb = i2400m_get_device_info(i2400m); + if (IS_ERR(skb)) { + result = PTR_ERR(skb); + dev_err(dev, "Cannot verify MAC address, error reading: %d\n", + result); + goto error; + } + /* Extract MAC addresss */ + ddi = (void *) skb->data; + BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address)); + d_printf(2, dev, "GET DEVICE INFO: mac addr " + "%02x:%02x:%02x:%02x:%02x:%02x\n", + ddi->mac_address[0], ddi->mac_address[1], + ddi->mac_address[2], ddi->mac_address[3], + ddi->mac_address[4], ddi->mac_address[5]); + if (!memcmp(net_dev->perm_addr, ddi->mac_address, + sizeof(ddi->mac_address))) + goto ok; + dev_warn(dev, "warning: device reports a different MAC address " + "to that of boot mode's\n"); + dev_warn(dev, "device reports %02x:%02x:%02x:%02x:%02x:%02x\n", + ddi->mac_address[0], ddi->mac_address[1], + ddi->mac_address[2], ddi->mac_address[3], + ddi->mac_address[4], ddi->mac_address[5]); + dev_warn(dev, "boot mode reported %02x:%02x:%02x:%02x:%02x:%02x\n", + net_dev->perm_addr[0], net_dev->perm_addr[1], + net_dev->perm_addr[2], net_dev->perm_addr[3], + net_dev->perm_addr[4], net_dev->perm_addr[5]); + if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac))) + dev_err(dev, "device reports an invalid MAC address, " + "not updating\n"); + else { + dev_warn(dev, "updating MAC address\n"); + net_dev->addr_len = ETH_ALEN; + memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN); + memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN); + } +ok: + result = 0; + kfree_skb(skb); +error: + d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); + return result; +} + + +/** + * __i2400m_dev_start - Bring up driver communication with the device + * + * @i2400m: device descriptor + * @flags: boot mode flags + * + * Returns: 0 if ok, < 0 errno code on error. + * + * Uploads firmware and brings up all the resources needed to be able + * to communicate with the device. + * + * TX needs to be setup before the bus-specific code (otherwise on + * shutdown, the bus-tx code could try to access it). + */ +static +int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags) +{ + int result; + struct wimax_dev *wimax_dev = &i2400m->wimax_dev; + struct net_device *net_dev = wimax_dev->net_dev; + struct device *dev = i2400m_dev(i2400m); + int times = 3; + + d_fnstart(3, dev, "(i2400m %p)\n", i2400m); +retry: + result = i2400m_dev_bootstrap(i2400m, flags); + if (result < 0) { + dev_err(dev, "cannot bootstrap device: %d\n", result); + goto error_bootstrap; + } + result = i2400m_tx_setup(i2400m); + if (result < 0) + goto error_tx_setup; + result = i2400m->bus_dev_start(i2400m); + if (result < 0) + goto error_bus_dev_start; + i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name); + if (i2400m->work_queue == NULL) { + result = -ENOMEM; + dev_err(dev, "cannot create workqueue\n"); + goto error_create_workqueue; + } + /* At this point is ok to send commands to the device */ + result = i2400m_check_mac_addr(i2400m); + if (result < 0) + goto error_check_mac_addr; + i2400m->ready = 1; + wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED); + result = i2400m_dev_initialize(i2400m); + if (result < 0) + goto error_dev_initialize; + /* At this point, reports will come for the device and set it + * to the right state if it is different than UNINITIALIZED */ + d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n", + net_dev, i2400m, result); + return result; + +error_dev_initialize: +error_check_mac_addr: + destroy_workqueue(i2400m->work_queue); +error_create_workqueue: + i2400m->bus_dev_stop(i2400m); +error_bus_dev_start: + i2400m_tx_release(i2400m); +error_tx_setup: +error_bootstrap: + if (result == -ERESTARTSYS && times-- > 0) { + flags = I2400M_BRI_SOFT; + goto retry; + } + d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n", + net_dev, i2400m, result); + return result; +} + + +static +int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags) +{ + int result; + mutex_lock(&i2400m->init_mutex); /* Well, start the device */ + result = __i2400m_dev_start(i2400m, bm_flags); + if (result >= 0) + i2400m->updown = 1; + mutex_unlock(&i2400m->init_mutex); + return result; +} + + +/** + * i2400m_dev_stop - Tear down driver communication with the device + * + * @i2400m: device descriptor + * + * Returns: 0 if ok, < 0 errno code on error. + * + * Releases all the resources allocated to communicate with the device. + */ +static +void __i2400m_dev_stop(struct i2400m *i2400m) +{ + struct wimax_dev *wimax_dev = &i2400m->wimax_dev; + struct device *dev = i2400m_dev(i2400m); + + d_fnstart(3, dev, "(i2400m %p)\n", i2400m); + wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING); + i2400m_dev_shutdown(i2400m); + i2400m->ready = 0; + destroy_workqueue(i2400m->work_queue); + i2400m->bus_dev_stop(i2400m); + i2400m_tx_release(i2400m); + wimax_state_change(wimax_dev, WIMAX_ST_DOWN); + d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m); +} + + +/* + * Watch out -- we only need to stop if there is a need for it. The + * device could have reset itself and failed to come up again (see + * _i2400m_dev_reset_handle()). + */ +static +void i2400m_dev_stop(struct i2400m *i2400m) +{ + mutex_lock(&i2400m->init_mutex); + if (i2400m->updown) { + __i2400m_dev_stop(i2400m); + i2400m->updown = 0; + } + mutex_unlock(&i2400m->init_mutex); +} + + +/* + * The device has rebooted; fix up the device and the driver + * + * Tear down the driver communication with the device, reload the + * firmware and reinitialize the communication with the device. + * + * If someone calls a reset when the device's firmware is down, in + * theory we won't see it because we are not listening. However, just + * in case, leave the code to handle it. + * + * If there is a reset context, use it; this means someone is waiting + * for us to tell him when the reset operation is complete and the + * device is ready to rock again. + * + * NOTE: if we are in the process of bringing up or down the + * communication with the device [running i2400m_dev_start() or + * _stop()], don't do anything, let it fail and handle it. + * + * This function is ran always in a thread context + */ +static +void __i2400m_dev_reset_handle(struct work_struct *ws) +{ + int result; + struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws); + struct i2400m *i2400m = iw->i2400m; + struct device *dev = i2400m_dev(i2400m); + enum wimax_st wimax_state; + struct i2400m_reset_ctx *ctx = i2400m->reset_ctx; + + d_fnstart(3, dev, "(ws %p i2400m %p)\n", ws, i2400m); + result = 0; + if (mutex_trylock(&i2400m->init_mutex) == 0) { + /* We are still in i2400m_dev_start() [let it fail] or + * i2400m_dev_stop() [we are shutting down anyway, so + * ignore it] or we are resetting somewhere else. */ + dev_err(dev, "device rebooted\n"); + i2400m_msg_to_dev_cancel_wait(i2400m, -ERESTARTSYS); + complete(&i2400m->msg_completion); + goto out; + } + wimax_state = wimax_state_get(&i2400m->wimax_dev); + if (wimax_state < WIMAX_ST_UNINITIALIZED) { + dev_info(dev, "device rebooted: it is down, ignoring\n"); + goto out_unlock; /* ifconfig up/down wasn't called */ + } + dev_err(dev, "device rebooted: reinitializing driver\n"); + __i2400m_dev_stop(i2400m); + i2400m->updown = 0; + result = __i2400m_dev_start(i2400m, + I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT); + if (result < 0) { + dev_err(dev, "device reboot: cannot start the device: %d\n", + result); + result = i2400m->bus_reset(i2400m, I2400M_RT_BUS); + if (result >= 0) + result = -ENODEV; + } else + i2400m->updown = 1; +out_unlock: + if (i2400m->reset_ctx) { + ctx->result = result; + complete(&ctx->completion); + } + mutex_unlock(&i2400m->init_mutex); +out: + i2400m_put(i2400m); + kfree(iw); + d_fnend(3, dev, "(ws %p i2400m %p) = void\n", ws, i2400m); + return; +} + + +/** + * i2400m_dev_reset_handle - Handle a device's reset in a thread context + * + * Schedule a device reset handling out on a thread context, so it + * is safe to call from atomic context. We can't use the i2400m's + * queue as we are going to destroy it and reinitialize it as part of + * the driver bringup/bringup process. + * + * See __i2400m_dev_reset_handle() for details; that takes care of + * reinitializing the driver to handle the reset, calling into the + * bus-specific functions ops as needed. + */ +int i2400m_dev_reset_handle(struct i2400m *i2400m) +{ + return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle, + GFP_ATOMIC); +} +EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle); + + +/** + * i2400m_setup - bus-generic setup function for the i2400m device + * + * @i2400m: device descriptor (bus-specific parts have been initialized) + * + * Returns: 0 if ok, < 0 errno code on error. + * + * Initializes the bus-generic parts of the i2400m driver; the + * bus-specific parts have been initialized, function pointers filled + * out by the bus-specific probe function. + * + * As well, this registers the WiMAX and net device nodes. Once this + * function returns, the device is operative and has to be ready to + * receive and send network traffic and WiMAX control operations. + */ +int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags) +{ + int result = -ENODEV; + struct device *dev = i2400m_dev(i2400m); + struct wimax_dev *wimax_dev = &i2400m->wimax_dev; + struct net_device *net_dev = i2400m->wimax_dev.net_dev; + + d_fnstart(3, dev, "(i2400m %p)\n", i2400m); + + snprintf(wimax_dev->name, sizeof(wimax_dev->name), + "i2400m-%s:%s", dev->bus->name, dev->bus_id); + + i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL); + if (i2400m->bm_cmd_buf == NULL) { + dev_err(dev, "cannot allocate USB command buffer\n"); + goto error_bm_cmd_kzalloc; + } + i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL); + if (i2400m->bm_ack_buf == NULL) { + dev_err(dev, "cannot allocate USB ack buffer\n"); + goto error_bm_ack_buf_kzalloc; + } + result = i2400m_bootrom_init(i2400m, bm_flags); + if (result < 0) { + dev_err(dev, "read mac addr: bootrom init " + "failed: %d\n", result); + goto error_bootrom_init; + } + result = i2400m_read_mac_addr(i2400m); + if (result < 0) + goto error_read_mac_addr; + + result = register_netdev(net_dev); /* Okey dokey, bring it up */ + if (result < 0) { + dev_err(dev, "cannot register i2400m network device: %d\n", + result); + goto error_register_netdev; + } + netif_carrier_off(net_dev); + + result = i2400m_dev_start(i2400m, bm_flags); + if (result < 0) + goto error_dev_start; + + i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user; + i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle; + i2400m->wimax_dev.op_reset = i2400m_op_reset; + result = wimax_dev_add(&i2400m->wimax_dev, net_dev); + if (result < 0) + goto error_wimax_dev_add; + /* User space needs to do some init stuff */ + wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED); + + /* Now setup all that requires a registered net and wimax device. */ + result = i2400m_debugfs_add(i2400m); + if (result < 0) { + dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result); + goto error_debugfs_setup; + } + d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); + return result; + +error_debugfs_setup: + wimax_dev_rm(&i2400m->wimax_dev); +error_wimax_dev_add: + i2400m_dev_stop(i2400m); +error_dev_start: + unregister_netdev(net_dev); +error_register_netdev: +error_read_mac_addr: +error_bootrom_init: + kfree(i2400m->bm_ack_buf); +error_bm_ack_buf_kzalloc: + kfree(i2400m->bm_cmd_buf); +error_bm_cmd_kzalloc: + d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); + return result; +} +EXPORT_SYMBOL_GPL(i2400m_setup); + + +/** + * i2400m_release - release the bus-generic driver resources + * + * Sends a disconnect message and undoes any setup done by i2400m_setup() + */ +void i2400m_release(struct i2400m *i2400m) +{ + struct device *dev = i2400m_dev(i2400m); + + d_fnstart(3, dev, "(i2400m %p)\n", i2400m); + netif_stop_queue(i2400m->wimax_dev.net_dev); + + i2400m_debugfs_rm(i2400m); + wimax_dev_rm(&i2400m->wimax_dev); + i2400m_dev_stop(i2400m); + unregister_netdev(i2400m->wimax_dev.net_dev); + kfree(i2400m->bm_ack_buf); + kfree(i2400m->bm_cmd_buf); + d_fnend(3, dev, "(i2400m %p) = void\n", i2400m); +} +EXPORT_SYMBOL_GPL(i2400m_release); + + +static +int __init i2400m_driver_init(void) +{ + return 0; +} +module_init(i2400m_driver_init); + +static +void __exit i2400m_driver_exit(void) +{ + /* for scheds i2400m_dev_reset_handle() */ + flush_scheduled_work(); + return; +} +module_exit(i2400m_driver_exit); + +MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>"); +MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/net/wimax/i2400m/op-rfkill.c b/drivers/net/wimax/i2400m/op-rfkill.c new file mode 100644 index 000000000000..487ec58cea46 --- /dev/null +++ b/drivers/net/wimax/i2400m/op-rfkill.c @@ -0,0 +1,207 @@ +/* + * Intel Wireless WiMAX Connection 2400m + * Implement backend for the WiMAX stack rfkill support + * + * + * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com> + * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License version + * 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA + * 02110-1301, USA. + * + * + * The WiMAX kernel stack integrates into RF-Kill and keeps the + * switches's status. We just need to: + * + * - report changes in the HW RF Kill switch [with + * wimax_rfkill_{sw,hw}_report(), which happens when we detect those + * indications coming through hardware reports]. We also do it on + * initialization to let the stack know the intial HW state. + * + * - implement indications from the stack to change the SW RF Kill + * switch (coming from sysfs, the wimax stack or user space). + */ +#include "i2400m.h" +#include <linux/wimax/i2400m.h> + + + +#define D_SUBMODULE rfkill +#include "debug-levels.h" + +/* + * Return true if the i2400m radio is in the requested wimax_rf_state state + * + */ +static +int i2400m_radio_is(struct i2400m *i2400m, enum wimax_rf_state state) +{ + if (state == WIMAX_RF_OFF) + return i2400m->state == I2400M_SS_RF_OFF + || i2400m->state == I2400M_SS_RF_SHUTDOWN; + else if (state == WIMAX_RF_ON) + /* state == WIMAX_RF_ON */ + return i2400m->state != I2400M_SS_RF_OFF + && i2400m->state != I2400M_SS_RF_SHUTDOWN; + else + BUG(); +} + + +/* + * WiMAX stack operation: implement SW RFKill toggling + * + * @wimax_dev: device descriptor + * @skb: skb where the message has been received; skb->data is + * expected to point to the message payload. + * @genl_info: passed by the generic netlink layer + * + * Generic Netlink will call this function when a message is sent from + * userspace to change the software RF-Kill switch status. + * + * This function will set the device's sofware RF-Kill switch state to + * match what is requested. + * + * NOTE: the i2400m has a strict state machine; we can only set the + * RF-Kill switch when it is on, the HW RF-Kill is on and the + * device is initialized. So we ignore errors steaming from not + * being in the right state (-EILSEQ). + */ +int i2400m_op_rfkill_sw_toggle(struct wimax_dev *wimax_dev, + enum wimax_rf_state state) +{ + int result; + struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev); + struct device *dev = i2400m_dev(i2400m); + struct sk_buff *ack_skb; + struct { + struct i2400m_l3l4_hdr hdr; + struct i2400m_tlv_rf_operation sw_rf; + } __attribute__((packed)) *cmd; + char strerr[32]; + + d_fnstart(4, dev, "(wimax_dev %p state %d)\n", wimax_dev, state); + + result = -ENOMEM; + cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); + if (cmd == NULL) + goto error_alloc; + cmd->hdr.type = cpu_to_le16(I2400M_MT_CMD_RF_CONTROL); + cmd->hdr.length = sizeof(cmd->sw_rf); + cmd->hdr.version = cpu_to_le16(I2400M_L3L4_VERSION); + cmd->sw_rf.hdr.type = cpu_to_le16(I2400M_TLV_RF_OPERATION); + cmd->sw_rf.hdr.length = cpu_to_le16(sizeof(cmd->sw_rf.status)); + switch (state) { + case WIMAX_RF_OFF: /* RFKILL ON, radio OFF */ + cmd->sw_rf.status = cpu_to_le32(2); + break; + case WIMAX_RF_ON: /* RFKILL OFF, radio ON */ + cmd->sw_rf.status = cpu_to_le32(1); + break; + default: + BUG(); + } + + ack_skb = i2400m_msg_to_dev(i2400m, cmd, sizeof(*cmd)); + result = PTR_ERR(ack_skb); + if (IS_ERR(ack_skb)) { + dev_err(dev, "Failed to issue 'RF Control' command: %d\n", + result); + goto error_msg_to_dev; + } + result = i2400m_msg_check_status(wimax_msg_data(ack_skb), + strerr, sizeof(strerr)); + if (result < 0) { + dev_err(dev, "'RF Control' (0x%04x) command failed: %d - %s\n", + I2400M_MT_CMD_RF_CONTROL, result, strerr); + goto error_cmd; + } + + /* Now we wait for the state to change to RADIO_OFF or RADIO_ON */ + result = wait_event_timeout( + i2400m->state_wq, i2400m_radio_is(i2400m, state), + 5 * HZ); + if (result == 0) + result = -ETIMEDOUT; + if (result < 0) + dev_err(dev, "Error waiting for device to toggle RF state: " + "%d\n", result); + result = 0; +error_cmd: + kfree_skb(ack_skb); +error_msg_to_dev: +error_alloc: + d_fnend(4, dev, "(wimax_dev %p state %d) = %d\n", + wimax_dev, state, result); + return result; +} + + +/* + * Inform the WiMAX stack of changes in the RF Kill switches reported + * by the device + * + * @i2400m: device descriptor + * @rfss: TLV for RF Switches status; already validated + * + * NOTE: the reports on RF switch status cannot be trusted + * or used until the device is in a state of RADIO_OFF + * or greater. + */ +void i2400m_report_tlv_rf_switches_status( + struct i2400m *i2400m, + const struct i2400m_tlv_rf_switches_status *rfss) +{ + struct device *dev = i2400m_dev(i2400m); + enum i2400m_rf_switch_status hw, sw; + enum wimax_st wimax_state; + + sw = le32_to_cpu(rfss->sw_rf_switch); + hw = le32_to_cpu(rfss->hw_rf_switch); + + d_fnstart(3, dev, "(i2400m %p rfss %p [hw %u sw %u])\n", + i2400m, rfss, hw, sw); + /* We only process rw switch evens when the device has been + * fully initialized */ + wimax_state = wimax_state_get(&i2400m->wimax_dev); + if (wimax_state < WIMAX_ST_RADIO_OFF) { + d_printf(3, dev, "ignoring RF switches report, state %u\n", + wimax_state); + goto out; + } + switch (sw) { + case I2400M_RF_SWITCH_ON: /* RF Kill disabled (radio on) */ + wimax_report_rfkill_sw(&i2400m->wimax_dev, WIMAX_RF_ON); + break; + case I2400M_RF_SWITCH_OFF: /* RF Kill enabled (radio off) */ + wimax_report_rfkill_sw(&i2400m->wimax_dev, WIMAX_RF_OFF); + break; + default: + dev_err(dev, "HW BUG? Unknown RF SW state 0x%x\n", sw); + } + + switch (hw) { + case I2400M_RF_SWITCH_ON: /* RF Kill disabled (radio on) */ + wimax_report_rfkill_hw(&i2400m->wimax_dev, WIMAX_RF_ON); + break; + case I2400M_RF_SWITCH_OFF: /* RF Kill enabled (radio off) */ + wimax_report_rfkill_hw(&i2400m->wimax_dev, WIMAX_RF_OFF); + break; + default: + dev_err(dev, "HW BUG? Unknown RF HW state 0x%x\n", hw); + } +out: + d_fnend(3, dev, "(i2400m %p rfss %p [hw %u sw %u]) = void\n", + i2400m, rfss, hw, sw); +} |